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Chapter 1

Introduction

1.1 Purpose

The Clemson Interactive Planner {CfIP ) is a software decision support tool
useful in planning the use of pinning and cutting resources in a cutting room.
This manual describes how to use C/IP

The current version of the software is implemented in Objectworks\Smali-
talk, an implementation of the Smalltalk-80 programming language that is avail-
able on a variety of platforms, including the IBM PC, Apple Macintosh. and
Sun SPARCStation. The current implementation was done on a Macintosh and
the examples in this manual are taken from that environment. All environments
are essentially the same; only the “look and feel” of the windowing system varies
across platforms.

1.2 Scope

The information in this document describes the the current implementation
developed under the sponsorship of the Defense Logistics Agency and Clemson
Apparel Research. The current implementation is a prototype and contains only
a relative few of the features the final system should contain. It is not suitable
for production use, primarily because the user interface is primitive, but also
because some of the class definitions required are incomplete.

This prototype has been produced as part of a research effort to use object-
oriented technologies to adapt simulations easily to a wide variety of cutting
room environments. The implementation-—and this manual—focus on those
portions that have been implemented and provide a look at how a production
system might look. Please note that software still needs to be written. The
information in this manual corresponds to the state of the system at the end
of current funding of the project under which it was developed. This document




and the document CZIP System Architecture serve to document the status of
the project at that time.
Instructions on installing the prototype system are provided in Appendix A

1.3 Background

C/{IP is a simulation system intended as a tool for assisting in the planuing of
the allocation of resources in a cutting room. Pinning and cutting operations in
an apparel plant are responsible for producing the pieces of fabric that go into
the construction of an apparel item. These operations are performed in a cutting
room using a variety of ar .omatic and manually-operated machines designed to
spread fabric in multiple layers and cut them. A cuttiry room manager must
make a variety of decisions with respect to how the various cesources—operators.
workstations, and materials—are scheduled to produce cut bundles on time and
at low cost.

The cutting room’s function includes the processing ! r'iz of fabric into the
pieces required for a garment’s manufacture. A typical ine's dress shirt, for
example, comprises about sixteen pieces that are sewn toge. .er before buttons
are attached. Each of these pieces is produced by the cutting :-:om in accordance
with a set of requirements derived from a wide range ol ji:rameters such as
fabric, fabric pattern, garment size, and garment style. The rimary goal of the
cutting room manager is to supply these pieces by the time 1hey are needed by
the sewing room, but to supply them at the lowest cost botii in terms of labor
and of fabric utilization (i.e., minimize the amount of scrap.

The scheduling of cutting room resources is a difficult pr..hlem complicated
by many factors. A cutting room contains equipment desigied to spread and
cut fabric. Machines have been developed to spread fabric in multiple layers
on a table. Other machines have been developed to cut through the layers of
spread fabric, thereby producing dozens of cut pieces at a time. Some of these
machines are operated by hand and others are operated under computer control.
A spread up to sixty feet long can be fed automatically through a cutter under
computer control to produce the cut pieces processed by the sewing roums.
Some specialized dye cutters can both spread and cut, needing only a single
operator to monitor the machine.

A variety of machines can be found in a typical cutting room. Figure 1.1
shows a sample cutting room with three tables supporting automatic spreading,
a BITE cutter that can be positioned at the end of any of these three tables and
process a spread of arbitrary length, a table that supports automatic spread-
ing and pinning but manual cutting, and a smaller table that supports manual
spreading and manual cutting. Pinning is required for garments that have “en-
gineered placements” —for example, plaid trousers for which the plaid pattern
must match between the left and right halves of the garment, meaning that the
cuts must be matched to the pattern. Pins are used to keep the pattern aligned




Figure 1.1: A sample cutting room. A, B, C: tables with automatic spreaders;
D: a BITE cutter that can be positioned at the end of any of three tables
and process a spread of arbitrary length; E: a table that supports automatic
spreading and pinning but manual cutting; and F: a smaller table that supports
manual spreading and manual cutting.

on all of the layers of fabric in a spread.
Among the decisions that a cutting room manager makes are:

e which operator to assign to which task. Each operator has different skills
and efficiencies that can be applied to the tasks that need to be done.

o whether operators should be scheduled to work overtime or perhaps whether
another shift should be added. If the workload is heavy, then the cutting
room might have to work more hours. Overtime raises production costs.

e how to reallocate resources when an operator doesn’t show up for work,
an operator leaves work early, or a machine goes down unexpectedly.

o which fabric to spread on which table. Once a spread is begun, it cannot
be moved to another table without introducing wrinkles, although most
spreads can be slid to another part of the same table. Most spreads do
not occupy the entire length of a table and more than one spread can
be placed on a table. However, if the cutting is to be performed by an
automatic cutter, then the cutting can only be done in the order that the




spreads lie on the table since the cutter is fed a spread from one end of
the spreading table. Often a style—for example, jeans, tee shirts, dress
shirts, etc.—requires several fabrics and spreads. Cousider a shirt with a
striped front and a polka-dot collar. Spreading must be planned such that
the cutting for all the striped parts can be done near the time that the
cutting for all the polka-dot parts is done so that the shirts can be sewn
without a need to store any cut parts for them for very long.

Some spreads are limited to certain tables because of the fabric qualities
or how cutting must be done. For example, only one automatic spreader
in a cutting room might be suitable for knit fabrics or a pinning table
must be used for spreading a plaid fabric to meet engineered placement
specifications.

¢ which fabric to spread next. Some spreads take a long time—for example.
spreads that require pinning for engineered placements, spreads that have
many plies, spreads of very thin fabrics, or spreads that cannot be done
using automatic spreading equipment—and tie up resources for a long
period of time.

o how much variance to use for a cut. If the fabric available is not sufficient
to produce an exact order, a decision must be made concerning how much
more or less to cut. If a relatively small amount of fabric will be left after
a cut, then a decision must be made concerning how many more pieces to
cut (and which size(s)) i2 order to minimize scrap.

e which production orders can be combined. Fabric utilization can be im-
proved by combining two or more production orders that use the same
fabric as long as there is sufficient fabric available. This combination can
be achieved either by placing markers end-to-end on a spread or by com-
bining the individual markers into a single marker?. Fabric utilization is
usually improved if the latter technique is used, but this technique takes
more lead time in order to produce a marker. Lying markers end-to-end
produces fabric savings by reducing waste on the cut ends of a spread.

Production orders requiring the same cuts can sometimes be incorporated
into a single spread. This is desirable because it reduces cutting time and
can save fabric.

¢ which spread to cut next. As illustrated in figure 1.1, a cutter may be
shared by multiple spreading tables. A decision must be made as to which
spread to cut based on the time that will be required for cutting and
subsequent needs for the spreading resources that will be freed up after
the spread is cut.

LA marker is a layout of the pieces to be cut from a given length of fabric, usually plotted
on a large piece of paper and placed atop a spread to identify the cuts. Labels printed on the
paper pieces identify—or mark—the cuts that are produced.




e what to do if a production order for a sample arrives. The production
of sample garments generally takes priority over regular production and
preempts jobs in progress.

The development of a cutting plan for some period of time—{or example.
a day or a week—is an art generally based on a cutting manager's experience.
Good cutting room managers are difficult to find and. as a relatively scarce
commodity, difficult to keep at a plant. Qur goal is to help a cutting room
manager make decisions about cutting room resource utilization such that costs
are minimized and fabric utilization is maximized. Our solution is a decision
support tool that simulates the cutting room in order to predict the outcome of
various plans.

~3




Chapter 2

Running a Simulation

In this chapter, we explain how t create a scenario. A scenario consists of a
cutting room and a plan for allocating the resources-—equipment. materials, and
operators—to the work assignments to be accomplished.

2.1 Creating a Scenario

Putting a scenario together requires describing a cutting room. defining re-
sources, and creating a plan to be used as the basis fo. a simulation. In this
section, we will describe the construction of a scenario involving a cutting roum
with two tables that can be used for both spreading and cutting. Three op-
erators, designated as Huey, Dewey, and Louie, are available for work. Rolls
of fabric are available for the various tasks to be performed. Construction of
other scenarios parallel construction of this example. [The file scenario.txt
on the distribution diskette contains the code necessary to construct and run
this scenario.]

A scenario is constructed by a sequence of Smalltalk statements. The cur-
rent implementation does not include an explicit class to represent a scenario,
though perhaps such a class should be provided. Nor does this implementation
provide any interactive support for describing a cutting room’. The approach
to defining a scenario in Smalltalk provides greater flexibility during prototype
development, but probably more flexibility than is required for the typical user.
We expect that, in practice, the need to use Smalltalk will be supplanted by the
use of interactive tools and dictionaries of resources.

!{deally, a cutting room would be described by arranging pieces of equipment on an area
of a computer monitor screen.




Resources

The first step in the construction of a scenario is the definition of the resources.
Resources comprise the equipment, operators, nd rolls of fabric and other ma-
terials that are found in the cutting room.
The segment of code below defines the resources in the example scenario.
Allocate equipment resources:
We define the two preces of
equipment and put them in
an ordered collection. This
collection will be used to
establish priorities in the

tablel := Table makePair: 'Table 1. sitmulation, but the ordering
table2 := Table makePair: 'Table 2' ts really ummportand.
equipntvent = OrderedCoHection The message lakes a

with: tablel with: table2. string designating the name

of the table as its
argument. The message
designation 1s taken from
DEVS, and 1s admattedly
not very user-friendly.

9




Define three operators, Huey, Dewey, and Loure

huey = Operator new

name; Huey

number: 1

status: #idle;

skills: {Dictionary new
at tablel put. 100
at table2 put: 1 00;
yourself},

image. (Image
extent: 16 @ 16

Define opr atur {fuey

employee number [ having
100%% efficrency al both

depth: 1 tables The tmage 1y used

palette. MappedPalette whiteBlack ge mou

bits: #[ {o represent this uperglor
on the screen ¢ Refer to

16:01 16rc0 1602 16120
16r04 16010 16009 16¢48
16r08 16r08 16¢09 16rc8
16¢05 16rd0 16¢02 16¢20
16¢01 16rch) 16:07 16670
16718 16:0¢ 16r61 16143
16045 16r51 16r49 16rc9
16r49 16749 1649 16r49]
pad. 16) reflectedinX,
yourself.

Objectuorks documentation
for details on image
creation. )




dewey ‘= Operator new

name. Dewey’,

aumber: 2;

status: #idle;

skilis: {Dictionary new
at: tablel put: 100;
at: table2 put: 100,
yourself);

image: (Image
extent: 16 @ 16
depth: 1

palette: MappedPalette whiteBlack

bits: #{
1601 16rc0 16,02 16720
16¢04 16r10 1609 16648
16r08 16r08 16109 16rc8
16505 16rd0 16002 16r20
16r01 16rc0 16:07 16¢70
16¢18 16r0c 16r60 16rc3
16r45 16r51 16749 16r49
16r49 16r49 16148 16rc9 |

pad: 16) reflectedinX,

yourseif.

1

Simalarly, define operator
Dewey




louie ‘= Qperator new
name: "Louie’;
aumber: 3;
status: #idle;
skills: {Dictionary new
at: tablel put: 1.00;
at: table2 put: 1 00;
yourseif };
image: (Image
extent: 16 @ 16
depth: 1
palette: MappedPalette whiteBlack
bits: #{
16+01 16rc0 16r02 16r20
1604 16r10 16r09 1648
16r08 16r08 16r09 16rc8
16105 16rd0 16r02 1620
16r01 16rc0 16r07 16¢70
16118 16:0c 16r60 16r43
16r44 16s51 16r48 16149
16r48 16549 16r49 161¢9)
pad: 16) reflectedinX;
yourself.

operators := ResourceColiection
with: huey with: dewey with: jouie.

12

And operator Loute

A resource collection 1s a
collection of resources that
15 able to display itself as a
collection 1n @ t1ew.




Create some fabrics and rolls of fabrics:

(cotton := Material new)
description: "100% cotton’.

redCotton = Fabric
color: Color red weave: nil
weight: 1 thickness: 0.0625 inches
material: cotton defectRate: 0.0.
greenCotton = Fabric
color: Color green weave: ail
weight: 1 thickness: 0.0625 inches
material: cotton defectRate: 0.0
blueCotton := Fabric
color: Color blue weave: nil
weight: 1 thickness: 0.0625 inches
material: cotton defectRate: 0.0.

greenRoll := FabricRoll

fabric: greenCotton

length: 500 feet width: 54 inches.
blueRoll := FabricRoll

fabric: blueCotton

length: 200 feet width: 54 inches.
redRoll := FabricRoll

fabric: redCotton

length: 1000 feet width: 60 inches.

greenRoll name: 'green cotton’.
blueRoll name: 'blue cotton'.
redRoll name: 'red cotton'

materials := ResourceCollection

with: greenRoll with: blueRoll with:

2.1.1

redRoll.

Tasks and Work Assignments

All fabrics are 100% colton

Creale three rolls of cotion,
one green, one blue, and
one red.

The length and urdth of
each roll 1s spectfied, and
each roll 1s given a name.
Note that untis of feet,
yards, and inches are used.
All lengths must include
the units of measure.

Put the rolls of fabric in a

resource collection,

Once resourzes have been defined, they can be used in work assignments. A
work assignment is the association of a task with the equipment, operators, and

13




materials. There are currently four kinds of tasks in C£IP . spreading, cutting,
moving, and bundling. Each task has a different class defined for it. The results
of a work assignment is represented by a ticket. So, for example, (f fabric s
to be spread and then cut, the result of the spreading task is associated with
a ticket and that ticket serves as one of the materials required for the cutting
task. Tickets, among other things, prescribe an ordering to work assignments.

ticketl ;= Ticket new: 'Ticket 1'.
ticket? := Ticket new: 'Ticket 2.
ticket3 ;= Ticket new: 'Ticket 3'.

spreading Taskl := Spreading Task
spread Template. (SpreadTemplate
new: 4 layersOf: greenCotton
ofWidth: 54 inches
ofLength: 60 feet)
rolls: {ResourceCollection
with: greenRoll with: blueRoll)
marker: nil.
spreading Task2 := SpreadingTask
spread Template: (SpreadTemplate
new: 10 layersOf: redCotton
ofWidth: 60 inches
ofLength: 30 feet)
rolls: (ResourceCollection with: redRoll)
marker: nil.
spreadingTask3 := SpreadingTask
spreadTemplate: (Spread Template
new: 6 layersOf: redCotton
ofWidth: 60 inches
ofLength: 3 yards)
rolls: (ResourceCollection with: redRoll)
marker: nil.
spreading Task4 := SpreadingTask
spread Template: (SpreadTemplate
new: 6 layersOf: blueCotton
ofWidth: 54 inches
ofLength: 50 feet)
rolls: (ResourceCollection with: blueRoll)
marker: nil.

14

Create three tickels now for
convenience.

There are four tasks to be
performed:

e spread { layers of
green collon

e spread 10 layers of
red cotton

o spread 6 layers of red
colton

o spread 6 layers of
blue cotion

A spread template defines
the length, width, number
of plics, and compesition of

each ply.




2.1.2 Plans

Once the tasks are set and the resource sets are defined, a plan is constructed.
A plan comprises a sequence of work assignments, each designating a task, a
set of one or more operators to work together on the task, and a workstation
at which the task is o be performed. A workstation is a section of a piece of
equipment and can vary from assignment to assignment. For example. a spread
might be constructed on two-thirds of the left end of a table and another spread
might be constructed on the right two-thirds. Two workstations at the same
table are involved. (Obviously, one of these tasks cannot be started until the
other spread has beer. moved. Thus, the demand for workstations at the same
piece of equipment specifies a partial ordering of work assignments.

A workstation is designated as two percentages of the width and length of a
piece of equipment, which is always assumed to have some rectangular shape.
This area is referred to as a seclion. Thus, the entire equipment can be a single
workstation, designated as width: 0-100%, length: 0-100%. The left half of a
workstation is designated as width: 0-100%, length: 0-50%.

A plan must be given a start time. This time sets the context for a simulation
run. The time is significant because workers have work schedules (default is
8:00 A.M. to 5:00 P.M. with an hour for lunch at noon and 15-minute breaks at
10:00 and 3:00).

15




plan := Plan new.
plan startTime: (SimulationTime
date: (Date newDay: 1
month: #Qctober year: 1992)
time: (Time fromSeconds: 0)).
wal = WorkAssignment
workstation: (Workstation
at: tablel section:

(Section origin: 0 0 corner: 0.5 1))
operators: (Set with: huey)
task: spreadingTaskl
ticket: ticketl.

wa2 = WorkAssignment
workstation: (Workstation

at: table2 section: Define four work
(Section origin: 0.25 0.25 assignments, one for each
corner: 0.75 0.75) ) task.

operators: (Set with: louie)
task: spreadingTask2
ticket: ticket2,
wa3 := WorkAssignment
workstation: (Workstation at: table2)
operators: (Set with: dewey)
task: spreadingTask3
ticket: ticket3.
wad = WorkAssignment
workstation: (Workstation
at: tablel section:
(Section origin: 0.5 0 corner: 1 1))
operators: (Set with: huey)
task: spreadingTask4.

Put the work assignments

plan add: wal. add: wa2; add: wa3; add: wa4. in a plan. Order matters.

2.1.3 Cutting Room

The final step in the construction of a scenario is the placing of the plan and
resources in a cutting room. The cutting room itself is a DEVS model, and the
argument to makePair: is the name of the cutting room.

16




cuttingRoom := (CuttingRoom makePair: "ACME Cutting Room’
containing: equipment
operators: operators
materials: materials).

cuttingRoom plan: plan.

2.1.4 Simulation Runs

A simulation run is created by associating a root coordinator with the cutting
room model, specifying a starting time for the simulation, and specifying the
time at which simulation should stop. Finally, the model is associated with
a simulation window, an instance of the class SimulationRunView, from which
simulation is controlled as explained in Section Running Simulations.

scenario := RootCoordinator new: 'RC:ACME Cutting Room’.

startTime := (SimulationTime
date: (Date newDay: 1 month: #October year: 1992)
time: (Time fromSeconds: 0)).

scenario
startTime: startTime;
timeLimit: (startTime addDuration: 5 days);
link ToParent: (cuttingRoom processor).

Cursor wait
showWhile: [SimulationRunView tryOn: scenario ].

2.2 Running Simulations

We have just described the specification of a scenario and the method for cre-
vicw provided by the

ating of a window to control simulation. The simulation
current implementation is shown in Figure 2.1.

The window labeled “ClIP: RC:ACME Cutting Room” contains the follow-
ing components:

¢ a Restart button used to reset all the models in the run.
e a Go button used to start or resume a simulation run.

e a Pause button used to interrupt a simulation run during execution.

17




% File Edit

SNEeE==——— === ClIP: RC:ACME Cutting Room

(D -

Restart Go

| Pause

R

J Step

RC.ACME Cutting Room
Last event: Oct 1, 00:00
Next event: Oct 1,00:00

1>

rOscer

e nil
x. il
y: nil

sigma. nil

Start: Oct 1, 00:00

[ Tabie 1[0@0,0.5@ 1T: {(Huey}, a Spreadi
[ Table 2{0.25@0.25,0.75@0.75): { Louie
['Table 2{0@0,1@1]: {Dewey}, a Spreadir

rTable |

- Break Area

(Dmp Area
e:nil
x nil
y: nil
50

sigma. nil

e:nil
x: il

yonil

sigma. nit

e:ni
x: it
y.nil

sigma: nil

nit

rTable 2
e:nil
x:nil
y:-nil

sigma. nil

nil

Figure 2.1: The initial screen for a simulation run.
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e a Step button used to single-step a simulation, meaning to execute one
iteration of the loop being performed by the root coordinator controlling
the simulation.

o atext view (under the buttons) that provides the time of the last simula-
tion event and of the next simulation event. These values are maintained
by the root coordinator.

e a set of views, one for each atomic model in the system—that is, one for
the various components of the cutting room. The default arrangement
is for the planner and dispatchers to show across the top line and for
the equipment to show across the bottom line. Each view is labeled by
its name and each provides a graphical representation of its current sta-
tus. All models show the values of e, x, y, and sigma associated with the
management of atomic models. Below this information, each view reflects
model-specific information:

~ Oscar is a planner and shows the current plan. [A graphical repre-
sentation would be preferable as would a scrollable view, but time
did not permit their implementation.]

— Drop Area is a dispatcher of materials. The three cylindrical objects
shown represent rolls of fabric. The horizontal representation of each
roll shows that the roll is currently not in use. A vertical orientation
designates that the roll is in use (or about to be since more than
one iteration of the root coordinator can apply to a given simulation
time).

— Break Area is a dispatcher of operator resources. The three icons
represent Huey, Dewey, and Louie. These operators are shown idle
since they are outlined in black.

~ Table 1 shows a rectangular area shaded gray. This represents the
surface of the table. An active workstation at a table is shown shaded
black. The nil showing in the upper right-hand corner reflects the
current phase of the model.
— Table 2 is similar to Table 1 and i3, in fact, of the same class.
When a window for a simulation run is first displayed, no restart has been
done on the root coordinator. Consequently, all values for simulation-
related information shows ail.

Figure 2.2 shows the window after the Restart button has been pressed. Note
that some of the fields have changed from nil to duration values, indicating the
time to the next internal transition. The tables show they are in the #passive
phase—that is, no work is in progress.

Once a run has been restarted, either of the Go or Step buttons may be used
to run the simulation. The Go button is equivalent to repeated pressing of the

19




€ File Edit

= CLIP: RC:ACME Cutting Room

Restat Go | Pause | Step |
RC:ACME CuttingRoom T
Last event: Oct 1, 00:00 {
Next event: Oct 1, 00:00 |

» Oscer rDrop Area - Break Area

e: 0 minutes sigma: 0 minutes e: 0 minutes  sigma:forever ¢ 0 minuwles sigmaforever

x:nil x:nil x: nil

y.nil y: il

Start: Oct 1, 00:00 0

['Tabie 1(080,0.5@1]: {Huey}, a Spreadi

{'Table 2{0.25@0.25,0.75@0.75]:{ Louie 0

[Table 2{0@0,1@1]: {Dewey}, a Spreadir
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Figure 2.2: The screen for a simulation run after restart.
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Figure 2.3: The screen for a simulation run after one step.

Step button. The Pause button may be used to interrupt a “Go”-ing simulation

run.

Figure 2.3 shows the window after the Step button has been pressed once.
On this first step, the break area has determined that all three operators are on
duty and can be dispatched to the various tables to await the arrival of materials
and the availability of workstations. This determination is reflected in the fact
that the operator icons are outlined in white.

Figure 2.4 shows the window after the Step button has been pressed again.
Note how operator Huey (designated by the “H” on the icon) has been dis-
patched from the break area to Table 1, the equipment at which his next work
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Figure 2.5: The screen for a simulation run after three steps.

assignment occurs. The icon shows him as being idle, presumably waiting for
materials to arrive since the equiptnent itself is not in use. {Note that no time
has actually passed as reflected in the root coordinator view.] The drop area is
ready to dispatch the three rolls of fabric at the end of this ste, .

Figure 2.5 shows the window after the Step button has been pressed again.
The operators have all been dispatched to the equipment at which they can next
start working according to the plan.

Figure 2.6 shows the window after the Step button has been pressed four
times. At this point, Huey can begin work on the next work assignment since
the necessary materials have arrived, having been dispatched from the drop
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Figure 2.7: The screen for a simulation run after five steps.
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Figure 2.8: The screen for a simulation run after eight steps.

area. Similarly, Louie can begin working at Table 2 with the arrival of materials

{see Figure 2.7).

Figure 2.8 shows the window after the simulation run has been stepped until
the third task has started. Notice how Huey is now working at a different
workstation at Table 1. Five minutes of simulated time have passed, the time
needed for Huey to complete his first work assignment. Louie has completed
his work assignment, but the simulation has not yet finished processing all state
changes at the current simulation time. Before time advances. all state changes
for Table 2 will have been performed.

Figure 2.9 shows the competed simulation. The tickets have been delivered
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the system with a minimum amount of programming. Adding a new type of
equipment or other resource can be effected by using inheritance. Adding new
objects amounts to creating new instances of existing or custom classes.

For example, consider adding a new kind of task—say, one to both spread
and cut. The basis for this new task is the class Task which encapsulates the
knowledge of what it means to be “a task.” The new class, SpreadAndCut. 1s
defined as a subclass of Task in a system or class browser (refer to the doc-
umentation for Smalltalk for details). The only programming required is the
definition of the method that computes the duration of time required to com-
plete Lthe task given operator(s), materials, and a workstation.

All parts of the system can be customized using inheritance, including views
and the default graphics used for various resources.
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Appendix A

Installation

Installation of CZIP requires the availability of Objectworks\Smalltalk, Version
4.1 or higher. A disk containing the necessary files accompanies this manual.

To import the CfIP class definitions and support files into the Smalltalk
environment, follow these steps:

1. If necessary, transfer the files on the installation diskette to a disk volume
accessible from within the Smalltalk environment.,

2. Start execution of the Smalltalk image on the host system.

3. Open a file browser by selecting file list from the Utilitzes menu in the
Launcher window. Deselect the “Auto read” feature, type “*.ST” in the
first field in the file list window, then hit the return key. A list of the
files to be imported appears in the file list window. Highlight each file in
turn and select file in from the menu obtained by holding down the (first)
mouse button when the cursor is positioned over the bar at the top of the
list of files. File-in messages will appear in the transcript window. Files
may be processed in any order, but the messages in the transcript window
will depend on the order used.

4. Once all files have been imported, open a system browser by selecting
system browser from the Browsers menu in the Launcher window. The
ClP classes will appear in categories whose names are prefixed with
“CIIP” or “DEVS”.

Correct installation can be verified by running the test in the file simple.tst.
Open a file editor on simple.tst by selecting file editor from the Utilities menu
in the Launcher window. Type “simple.tst” into the dialog box prompting for
the file name. Double click at either the start or end of the text in the window
to highlight the text and then select “do it” from the menu obtained by holding
down the (first) mouse button while the cursor is positioned over the bar at the
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top of the text window. A simulation run window wiil appear. Press the Restart
button with the mouse, and then the Go button. The results of the test run are
written to the system transcript window. Close the simulation window when
execution completes.
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Chapter 1

Introduction

This document describes the results of our research into the application of
object-oriented technologies to the development of a simulation of cutting room
operations in an apparel plant. We gratefully acknowledge funding of this re-
search by the Defense Logistics Agency through Clemson Apparel Research,
Contract Number DLA300-87-D-0017, D.O. 0019. We also would like to thank
Jantzen in Seneca, SC for their interest in the project that helped us get support
from CAR, and Sundaresan Jayaramen at Georgia Institute of Technology for
help in understanding cutting room operations and how they fit into the larger
manufacturing process.

1.1 Purpose

The purpose of this research has been to investigate whether object-oriented
technologies can be useful in improving the efficiency of cutting room operations.
The cutting room is responsible for construction of the bundles of materials that
are assembled into garments in the sewing room. The decision as to the order in
which various cutting orders are processed and the way in which cutting room
resources—operators, tables, cutting machines, and so on—atre allocated to the
cutting orders significantly affects the efficiency with which the cutting room
operates. When this project started, a typical apparel plant would be cutting
orders today that were not scheduled for sewing for another two or three weeks
from today. Such long lead times tend to reduce the impact of problems or
inefficiencies in the cutting room on other phases of production. In today’s
competitive environment, practices such as these are too expensive. [deally,
fabrics would arrive in the warehouse, almost immediately be dispatched to the
cutting room for processing, and the resulting bundles delivered to the sewing
room just when they are scheduled to be sewn.

With this “just in time” approach to manufacturing, the efficient operation




of the cutting room is more critical than it was previously. The impact of
problems in the cutting room is even more significant as companies such as
Jantzen move toward centralized cutting facilities—that is, cutting rooms that
cut for two or more sewing rooms, some of which might be quite remote. For
example, the cutting room at Jantzen in Seneca, SC cuts for the sewing room
at the same plant as well as plants in the Caribbean.

Cutting room management is currently an art. Cutting orders must be as-
signed to the var.ous machines and operators in such a way that costs are held to
a minimum while bundles are delivered on time. For example, a schedule might
call for cutting black wool slacks, white cotton shirts, and orange sweatpants on
a given day. If the cutting room contains two tables with automatic spreaders
and two operators are available, then the manager must decide which orders
will be cut at each table and which operator will be assigned to each cut. If,
for example, only one of the spreading machines can handle the heavy rolls of
wool, then some of the decisions don’t have to be made. Still, how the remain-
ing resources are assigned to the work significantly affects production efficiency.
The problem is compounded by the occasional need to process rush orders for
cutting pieces for sample garments.

Many cutting room managers just have a “knack” for assigning resources
well. He knows the operators, he knows the equipment, and he knows from
experience about how long each cut will take. Unfortunately, if a cutting room
manager leaves a plant, the problems of the cutting room can have a devastating
effect on production in a whole plant. In fact, this research was first suggested
to us as a result of a cutting room manager’s leaving and throwing a whole
plant into disarray until he had been replaced with someone who could get the
cutting room running smoothly again.

Our approach in addressing this problem was to build a software tool to sup-
port a cutting room manager in making decisions with respect to the allocation
of cutting room resources to cut orders. Qur idea was to build a software system
to simulate cutting room ope-ations for a given set of cutting orders and work
assignments based on those orders. A cutting room manager constructs a plan
containing work assignments for the operators. A work assignment comprises a
task and the equipment and materials to be used in performing that task. Given
such a plan, the system simulates the operation of the cutting room, determin-
ing when each assignment is completed and when the plan is completed. The
plan can be revised and new simulations run in order to determine the effect of
these changes on the completion times.

We proposed to base the system on object technologies for two reasons.

1. We felt that the system would be most useful to a cutting room manager if
it had a graphical interface such that an animation of the simulation could
be displayed. Animation carries more impact than charts and tables. Qur
goal was to have a manager be able to watch the effects of a plan on the
cutting room as operators move from workstation to workstation, as rolls




of fabric are processed into spreads, as spreads are cut into stacks, and as
stacks are packaged into bundles.

Most modern graphical user interfaces (GUI) are based on object technol-
ogy. Windows, widgets, icons, and geometric shapes are represented by
objects.

2. Every cutting room is different. The number and capabilities of the opera-
tors, the number and types of equipment, and the layout of the equipinent
varies {from cutting room to cutting room. This variety would generally
mean that our simulation system must be customized for each cutting
room. We saw objects as a good way of making the customization as
easy as possible. Since objects encapsulate the behavior of the real-world
entities they represent in software, then any object whose behavior cor-
responded to what the simulation expected could Le “plugged into” the
system. For example, the addition of another spreading table could be
effected by creating an object to represent it, puttirg that spreading table
object into the cutting room object, and just using it 10 assignments within
a plan. The addition v » new type of cutting machine entails describing
the behavior of the machine, r~nuiring some pregramming. However, in-
heritance from the general class of cuttii: = machines or even from a specific
type of cutting machine that is “almost ['ke” th.e new type can be used to
define most of the behavior of the machin: Trogramming is needed only
to describe any differences.!

1.2 Scope

This document describes the design and implementation of C{IP, including
information about DEVS, the simulation methodology used. The information
in this document is complemented by information in the C/IP User’s Manual
and in the actual code for the system. Smalltalk-80 classes are not documented
here, except in cases where changes were made to predefined library classes.

1.3 Overview of the Document

The remainder of this document is structured as follows:

o Chapter 2 provides information about object-oriented programming and
DEVS, the methodology that we chose to use in building our simulation.

e Chapter 3 presents the software architecture of our system. The descrip-
tion comprises two main components:

'We could hope for a day when manufacturers of cutting room equipment provide class
descriptions of each of the products that they sell and those descriptions could be used directly
by the simulation.




1. The implementation of DEVS

2. The implementation of cutting room components
e Appendix A provides class definitions for the DEVS component.
o Appendix B provides class definitions for the cutting room components

A separate document, CFIP User’s Manual, details the user interface and
how to start up and run the system.




Chapter 2

Background

We present a brief description of object-oriented programming and of the DEVS
methodology on which the discrete event simulation aspect of our design is
based.

2.1 Object-Oriented Programming

In this section we will provide a brief description of object-oriented program-
ming. Software professionals do not agree as to exactly what constitutes object-
oriented software, but we adopt Wegner’s{Weg87] definition, which requires that
a language support these three concepts to be considered object-oriented:

e Objects
e Classes
e Inheritance

We will consider a software system to be object-oriented if it is designed
and implemented using these three concepts. An object-oriented program is a
software system whose components are objects. Computation is performed via
the creation of new objects and the communications between them.

2.1.1 Objects

An otject is the basic component of the object-oriented paradigm. Each object
is characterized by its own set of attributes and by a set of operations that it can
perform. The values of attributes may change as a resuit of the application of the
operations and, in general, only through the operations. Operations are referred
to as methods (or member fun:tions in C*+) and are applied via the process
of message passing (or messaging). A message sent to an object specifies a



method name and a {possibly empty) list of arguments, each of which designates
sume object. A message received by an object causes code associated with the
method named in the message to be executed with its formal parameters bound
to corresponding values in the argument list. The processing of a message by
the receiving object might result in a state change—that is, a change to one
or morc of the receiving object’s attribuics—and/or the sending of a message
to itself or some other object. It is useful to think of message passing as being
roughly equivalent to function calls in the procedural paradigm. However, the
purpose of the method invoked as the result of a message is intended to modify
the internal state of the object to which it is attached rather than to modify its
arguments and return them. An object may even send itself a message. Some
languages provide special terminology to allow the object to refer to itself—for
example, self in Smalltalk—or let the object be the default if another object is
not explicitly referenced.

As an illustration, consider polygons drawn on a computer screen. Each
polygon is an object defined by an ordered collection of vertices. The ord-r
specifies how the points are connected. The vertices define the state of a polygon
object, both its shape and its location on the screen. Operations on a polygon
include “draw” (display it on the screen), “move” (erase it from its current
location and redraw it at some specified distance in the r and y directions),
and “contains?” (a check whether some specified point is inside the polygon).
Figure 2.1(a) shows three polygon objects on a computer screen and the points
that define them. Figure 2.1(b) shows how these polygons are represented as
objects.

Note that in describing polygon objects we have used other objects—namely,
a screen and points. A screen is a physical object that for our needs here
comprises an arrangement of picture elements (or pizels) that we can manipulate
to draw shapes. A screen object provides methods to turn pixels on and off, to
access the current state of a specified pixel (on or off}, and to draw lines between
any two points, where the screen maps points to pixels. A point represents a
specific pixel according to some z and y coordinate system. A point object
provides methods to access its £ and y components and perhaps to compute its
distance from another point.

There is no reason why objects must only represent physical objects. They
may be instances of any sort of conceptual entity. Processes in an operating
system, the level of illumination in a room, and the role of being a lawyer in a
particular trial are all examples of objects.

2.1.2 Classes

A class is a set of objects that share a common conceptual basis. The definition
of a class includes a set of data attributes plus the set of allowable operations
on that data. A class definition can be viewed as a template that is used for
the production of objects. All objects in a given class have matching attributes
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Figure 2.1: Polygon objects.
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Figure 2.2: A class definition for quadrilaterals.

and operations. Each object is an instance of some class, and the state of an
object is contained in its instance variables.

For example, the two quadrilaterals in Figure 2.1—and every quadrilateral
object—have the same properties, so we can define a class Quadrilateral shown
in Figure 2.2 to specify these properties. Every object of class Quadrilaterai has
the same set of instance variables and methods defined by the class. In this
sense, the class Quadrilateral provides a template for our representation of all
four-sided polygon objects, specifying both the variables in each instance of a
Quadrilateral and the set of methods that can be sent to any instance.

An instance creation operator must be provided in order to produce objects
from a class definition. A number of approaches have been taken by object-
oriented programming languages. C**, for example, defines an explicit new
operation that creates a new instance of a specified class, incorporating a con-
structor concept by which instances are initialized implicitly when an object
of the class is created. Smalltalk uses class operators to create instances. The
method new is inherited from the Object class and serves as the basis for creating
instances of all other classes.

Programming languages take different approaches to instance destruction—
that is, the deletion of objects when they are no longer useful so memory can
be made available for other objects. C** provides a delete operator that can
explicitly free up the space used by an object, thereby relying on the programmer
to manage objects in memory. C** also allows each class to define a destructor
method that is called implicitly when an object is destroyed. Smalltalk, on the
other hand, does not provide a mechanism to destroy objects, but relies instead
on garbage collection.

Most languages that support the object-oriented paradigm provide data ab-
straction mechanisms. The mechanism for class definition provides a means for
designating the operations that users of the class will be able to access. This
set of operations is termed the class interface. The remainder of the class defi-
nition provides data definitions and auxiliary function definitions that comprise
the class implementation. This separation isolates the users of the class from




the effects of changes to the internals of a class.

The class interface is the set of operations that instances of the class can be
requested to perform. The simplified public interface for the Quadrilateral class,
Figure 2.2, shows the messages to which instances of the Quadrilateral class
can respond. Sending the message draw to an instance of class Quadrilateral
results in that instance executing its draw operator. The draw operator would
be designed to draw a quadrilateral having shape and location determined by
the point data inside the instance.

The class implementation often includes instances of other classes that pro-
vide services the new class requires. In the quadrilateral example, the four points
that specify a quadrilateral are point objects defined within the quadrilateral
object. These point objects are intended to be inaccessible from other cbjects.
If we decide that it is important for other objects to be able to access these
points, then we can add methods to the class interface to provide this access.
For example, we might want to designate one point—perhaps the point closest
to point {0,0) on the screen—as a reference point. We would define a method,
say referencePoint, to provide that value rather than allowing other objects to
compute it from the values of point;, point,, points, and points. A class imple-
mentation might also include some private methods—for use in implementing
the class, but not intended for use by any other object. For example, we might
want a private method that, when given a list of points, determines the point
that is closest to (0,0).

A class is similar to—but also very different from—a record in Pascal or a
structure in C in the sense that it is an aggregation of data values. Classes
normally extend the usual semantics of records to provide varying levels of
visibility—tl.at {5, some components of the record may not be accessible by every
component that has visibility to the record type. Classes differ from records in
that they include definitions of operators with the same status as the data values
declared within the class. These are not equivalent to function pointers that are
defined independently of the class and stored in the class instances.

Virtually all object-oriented languages use objects as the representation of
the instances that make up an application. Some languages, such as Smalitalk,
also implement the classes themselves as objects. Since objects are the ma-
nipulatable entities in an object-oriented application, the implication is that
languages that implement classes as objects allow the manipulation of classes
by an application. This capability supports the flexibility needed in many ap-
plication areas such as artificial intelligence.

2.1.3 Inheritance

Inherilance is a technique for using existing definitions as the basis for new
definitions. The definition of the new class is a combination of the data and
operation declarations from the existing class(es) and any declarations added
by the new class. The new class reuses the existing definitions without any need
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Figure 2.3: An example of the use of inheritance.

to modify the existing classes. It is less expensive to develop this way because
a portion of the class has already been implemented and tested. The existing
class is referred to as the parent class, the base class, or the superclass. The
new class is correspondingly referred to as the child class, the derived class, or
the subclass.

Consider the Quadrilateral class. If the class Polygon shown in Figure 2.3(a)
existed when class Quadrilateral was defined, then the definition of Quadrilateral
could have looked like Figure 2.3(b). The italicized items in Figure 2.3(b) have
been defined in class Polygon and added to the definition of class Quadrilateral
through the inheritance mechanism. Presumably these elements have already
been tested as part of class Polygon and may not need to be retested as rigorously
as newly written code.

Defining a new class using inheritance can be viewed as describing a new
set of objects that is a subset of the objects described by the existing class.
This new subset can be thought of as a specialization of the existing class. For
example, the Quadrilateral class in Figure 2.3 is a specialization of the Polygon.
A quadrilateral is a polygon restricted to four sides. We could further specialize
a quadrilateral into a rectangle which is a quadrilateral having special proper-
ties. The interface for the Quadrilateral class might be identical to that of the
Polygon class, and the interface for a Rectangle might be the same as that of the
Quadrilateral.

The new class can also be viewed as having an interface that is an erpan-
sion of the interface of the existing class. For example, deriving a four-wheel
drive vehicle class from an existing vehicle class would not only specialize the
definition to a subset of vehicles, but probably also introduce new capabilities
in the new class interface. Continuing with our example, we might wish to add
more operations for a rectangle—for example, a method that would answer the
largest ellipse that can be enscribed in that instance.
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Figure 2.4: An inheritance hierarchy for some polygon classes.

How much of the existing definition is available to be added to the new defini-
tion varies from one language to another. Many languages give the implementor
control over which attributes are actually inherited and how they are inherited.
Typically, the system developer may choose to either inherit only the interface
and not the representation or to inherit both the interface and the representa-
tion. In our approach to object-oriented design, we inherit all the attributes of
the existing class in the new class definition, despite what facilities our imple-
mentation language might provide to hide inherited attributes. Qur approach
leads to the development of inheritance structures that are conceptually rational
and understandable.

2.1.4 Polymorphism and Dynamic Binding

Objects, classes, and inheritance characterize the object-oriented paradigm, but
other techniques are used in conjunction with them to provide additional power.
Two of these are polymorphism and dynamic binding.

A language supports polymorphism if the same name or symbol can be used
in different contexts. In an object-oriented programming language, more than
one class may use the same method names, and hence the various instances of
these classes can respond to the same messages, though each in its own way. The
determination of which method to dispatch when a message is received by an
object is determined through dynamic binding—that is, the method dispatched
is determined by the class of the receiving object at run time. Consider, for ex-
ample, the class hierarchy shown in Figure 2.4. By polymorphism, any instance
of these classes can reply to a message contains?(p), but the way in which the
answer is computed depends on the kind of polygon. If the message is sent to
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P, then the method dispatched to compute the answer depends on whether P is
a triangle, a quadrilateral, or a rectangle. In this way, the action taken depends
on the class of P at run time.

2.1.5 Benefits

We briefly examine some of the reasons for using object-oriented design and
implementation techniques: Object-oriented programming

e Promotes reusability. Object-oriented techniques yield structures that are
more readily reused than other design techniques. Reuse comes in many
forms:

1. There is reuse by using an instance. For example, an application
might use many instances of class Quadrilateral.

2. There is reuse by using an instance in a definition. For example, the
Quadrilateral uses instances of class Point.

3. There is reuse by evolution. For example, class Quadrilateral is used
to define class Rectangle.

The support for data abstraction in object-oriented methods promotes
these types of reuse. Designers view object-oriented techniques from dif-
ferent perspectives. Those currently using languages such as C will see the
additional potential for reuse provided by classes. Those using languages
such as Ada or Modula-2 will see packages and modules as providing the
first two types of reuse. What they will not have seen is the third type of
reuse.

e Fucilitales maintenance. The information-hiding supported by most object-
oriented programming languages facilitates maintenance. The interface of
a class defines the set of operations on the data of an instance of that class.
If a change is made to the representation of data defined in the class, then
those operations defined in the class that interact with the changed data
need to be modified. There is no need for users to modify their references
to instances of the class unless the signature of one of the operations has
been changed. The impact of this and many other maintenance activities
is localized.

For example, consider an implementation of the class Rectangle in which
we wish to use two points to define it instead of four points. [Note that if
we require a rectangle to be aligned with the z and y axes, then we can
define it in terms of its upper-left vertex and its lower-right vertex. Many
microcomputer systems provide facilities to draw rectangles in terms of
these two points.] The methods draw, move, contains?, and referencePoint
would have to be reimplemented to determine the other two points if they
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are needed. These changes would be localized to the code of the methods
of the Rectangle class.

e Ezploits commonality. Object-oriented techniques exploit commonality
in two ways. First, there is commonality across applications. Software
development firms tend to develop applications that address a common
domain such as communications or graphics. By developing units that
are easily reused, object-oriented design exploits the commonality within
a company’s applications. Second, there is commonality across system
components. For example, a graphics system defines numerous shapes
such as lines, triangles, circles, and rectangles. These components are
different shapes, but they have many common attributes. Object-oriented
design develops a structure that factors out these common elements into
a class, which can then be the basis for defining each of the individual
shape classes.

e Reduces complezity. This is where the advertisement starts because we
have little more than anecdotal evidence to support this claim. A recent
paper by Rosson and Gold[RG89] does provide some evidence in support of
the claim. Existing procedural techniques require that the designer have
a solution in mind before beginning the design process. This requires
the designer to be an expert problem solver because the design technique
only supports the computerization of a solution rather than the problem-
solving process. This further implies that the designer cannot begin the
system design until a complete problem solution is known. With today’s
complex systems, this is often a severe limitation.

Object-oriented techniques begin the development process in the problem
domain rather than in the solution domain. This relieves the designer
from developing a complete solution before beginning any design work.
Thus, the designer is able to handle more complex problems because of
the support provided by the design techniques.

We have used these techniques because we wanted an effective solution. We
proposed to use object-oriented techniques for the design and implementation
of C/IP for a number of reasons:

e The use of objects in design leads to an architecture that is characterized
by discrete structures that communicate with each other. The encapsu-
lation of functionality means that otherwise lengthy and complex flows
of control are decomposed into shorter, simpler segments hidden within
the individual objects. Consider the simulation component of C/IP . The
functionality needed to simulate the passage of simulated time, to post
the time of next event for a given object, and even to display an object
must be provided for each simulation object. In different scenarios, users
may have the power to create an almost unlimited number of cutting room
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resources to use in a simulation run. Having each instance of a resource
contain the functionality that it needs results in an architecture that dis-
tributes responsibility. Such a system easily handles multiple occurrences
of complex resource entities.

e The use of inheritance to evolve new definitions from existing ones sup-
ports the solution of complex problems. Areas in which solutions evolve
over time rather than being obvious at the outset require many changes as
an application is developed. Developing subclasses from existing classes
allows the designer to modify the behavior of classes incrementally as
new information about a solution becomes available. These changes can
be made without disturbing existing software components, which depend
on the classes that are to be modified. We want to be able to add new
equipment to a cutting room as well as to be able to add new kinds of
equipment.

e The encapsulation of representa.ion characteristic of objects supports the
prototyping of systems. Once the module interfaces are developed, the
underlying representations of classes can be modified without impacting
the modules that use the services of the changing module. Quickly de-
veloping the behavior of a simulation object can be followed by detailed
implementation that provides specialized responses. Strictly speaking, this
is a characteristic of data abstraction that is an integral part of object-
orientation. Our goal has been to develop a prototype that can be refined
later for a specific installation. We have been less concerned about finding
actual values for things such as operator efficiency and spread rates for
equipment, and more concerned about identifying how all the objects need
to interface in order to produce a meaningful simulation run.

2.2 DEVS

In this section we describe how DEVS works. [For a more formal treatment and
further details, see Zeigler’s book.]

The DEVS methodology is based on the definition of models and on the
interconnection of these models to construct larger models which may, in turn,
be connected to other models. This layered construction provides a hierarchy
of models. Each model is modular in the sense that it can be used in a variety
of simulations.

Two main kinds of entities exist in DEVS-Scheme: models and processors.
Models contain information and operations about the domain of interest. Pro-
cessors carry out the simulation of DEVS models.

In this section we describe models, processors, and simulation in DEVS.
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2.2.1 Models

Zeigler describes a DEVS model as an object containing the following informa-
tion {Zei90, pp. 48-49]:

e a set of input ports through which external events are received
e a set of output ports through which external events are sent

o the set of state variables and parameters: two state variables are usually
present—phase and sigma (in the absence of external events the system
stays in the current phase for the time given by sigma)

¢ the time advance function which controls the timing of internal transitions—
when the sigma state variable is present, this function just returns the
value of sigma.

e the internal transition function which specifies to which next state the
system will transit after the time given by the time advance function has
elapsed

e the external transition function which specifies how the system changes
state when an input is received—the effect is to place the system: it a new
phase and sigma thus scheduling it for a next internal transition; ihe next
state is computed on the basis of the present state, the input po:* and
value of the external event, and the time that has elapsed in the cuirent
state.

o the output function which generates an external output just beicre an
internal transition takes place.

DEVS models comprise two categories: atomic models and coupled model.

Atomic Models

Atomic models are those models at the lowest level of the hierarchy. The behav-
ior of such a model is determined by the input even types it recognizes, its state
variables and parameters, its time advance function, its internal transition func-
tion, its external transition function, and its output function. We characterize
an atomic model by means of a simple example.

Figure 2.5 shows a graphical representation of a simple processor. The pro-
cessor being modeled is provided with jobs, each requiring a fixed amount of
processing time. This processor does not queue up jobs as they arrive. If a job
arrives while the processor is busy with a job, then the arriving job is ignored.

The model behaves in accordance with the description provided in the right
part of the figure. When the model receives an input z on port in and the
processor is idle (state passive), then the processor starts to work on the job
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State variables:

sigma = o0

phase = passive

jobID = None
Parameters:

processingTime = 5

External transition function:
if phase is passive then
jobID — input job ID
hold in phase busy for processingTime
else - -phase is busy
continue
Internal transition function;
case phase is

busy: passive
passive: (Does not arise)
Output function:
send jobID to port out

Figure 2.5: A DEVS model for a simple processor.

16




whose ID is specified in z. The processing time for each job is fixed at five time
units {parameter processingTime). After processing time has passed, the identi-
fication of the completed job is emitted on output port oul as determined by the
output function. If a job atrives on the input port while the processor is already
busy (as signified by phase busy), the arriving job is ignored as determined by
the external transition function’s handling of an input when the processor is in
the busy phase.

An atomic model can have any number of input and output ports. The
external input function must specify an action for an arrival on each of the
input ports. Usually, the processing associated with an arrival on any given
port is determined by the current state of the model-—as determined by phase
and possibly other state variables—and/or by the object arriving on the port.

With respect to the management of state and time, four actions are com-
monly taken:

1. hold-in phase for duration. The model stays in the phase indicated for
the duration of time indicated. Thus, the next internal transition occurs
at the current time plus the duration indicated. However, the arrival of
an external input might preempt that next internal transition.

2. passivate in phase. The model enters the phase indicated for an infinite
amount of time, equivalent to hold-in phase for co. Thus, no next internal
transition is scheduled to occur and the model will react only to external
inputs.

3. passivate. The model enters a passive phase for an infinite amount of time.
equivalent to passivate in passive.

4. continue. The model continues in the same phase, reducing the amount
of time to the next internal transition by the amount of (simulated) time
passed in this state so far.

It is important to realize that an atomic model has no conception of a global
simulation time. Time relates only to the state transitions that a model must
undergo. In the simple processor example, the model is either busy or passive
and oblivious to the current simulation time. The only times of significance are
durations—the elapsed times at which state transitions occur.

Coupled Models

A coupled model comprises a set of components—each an atomic or coupled
model— with specified interconnections A coupled model contains the following
information:

o the set of component models

¢ the set of input ports through which external events are received
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Figure 2.6: A simple coupled model for a queuing processor The queur o5 ased
to hold jobs waiting for the simple processor.

o the set of output ports through which external events are sent

o for each component, its nfluencees—the other components of the mode

that affect it
the coupling specification:

~ the external input coupling that specifies how input pocts of the
coupled model are connected to input ports of the compuonent modeis

.

— the external output coupling that specifies how autput ports of the
component models are connected to the nutput ports of the coupied
model

— the internal coupling that specifies how the output ports »f rompo-
nents are connected to the input ports of components

Note that an output port of a component model can be connected o
any number of the input ports of component models as weil as 1o any
number of output ports of the coupled model. Similarly, an input port
of the coupled model can be connected to any number of input purts of
component models.

the select function that specifies the order in which two ot more compo-
nents that are ready for a state transition at the same time will undergo
the transition.

Consider the coupled model shown tn figure 2.6. This model s for what we'l]
call a “queuing processor” because it queues jobs until they can be processed.’
[t comprises two models: one simple processor model and one queue model. A
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Figure 2.7: Processor-model pairings for a queuing processor.

queuing processor has one input port—in— and one output port—out. Input
Jobs are routed to the queue component model which buffers jobs arriving on its
in port and sends jobs one at a time to the processor in response to an arrival
of anything on its send port. The output of the processor is routed both to the
output of the queuing processor and to the send input port of the queue.

Note that the queue model could be either atomic or coupled. The behaviar
of either type of model is indistinguishable, illustrating the modularity of DEVS.

2.2.2 Processors

Within a simulation run, each DEVS model is controlled by a processor that
monitors the passage of simulated time and activates functions in the model as
appropriate. There is a one-to-one mapping of processors to models. The model
attached to a processor is referred to as the processor's devsComponent. Each
atomic model is controlled by a simulator. Each coupled model is controlled
by a coordinator. A special processor, a root coordinator, manages the overall
simulation and is linked to the coordinator of the outermost coupled model.
Processors are linked in a tree that reflects model hierarchy. Leaf nodes are
simulators while internal nodes are coordinators except for at the root. The
configuration for the processor example is shown in figure 2.7. Processor objects
are shown as circles, models as rectangles.

Processors send and receive four kinds of messages to effect simulation. A
processor takes action on its attached model based on the type and content of
the messages it receives. Simulation begins when the root coordinator sends the
first message to indicate the start of simulated time. The message is routed by
processors through the hierarchy to a mode} with an appropriate state change.
{Models are prioritized so that if more than one has a state change imminent,
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then the next one to change is selected determimistically.) A state change can
result in outputs that affect other models. Messages are routed by processors
as appropriate based on output and input port connectisns between models.
Eventually, once all state changes at the current time have settled out, the root
coordinator receives a message indicating that simulation time can advance and
a cycle of messages is begun anew. Simulation terminates after some preset
duration or when no more transitions are scheduled for any of the models in the
simulation.
The four message types used in DEVS are:

* —indicates that the next internal event is to be carried out within the scope
of the processor receiving the message.

r -—signifies the arrival of an external input to a processor’s model and bears
the global model time of that e-2nt. The input value and port of arrival
are indicated in the message content.

y -—carries the output of a model in its content and the global model time at
which output occurred.

done —indicates that a state transition has been carried out and bears the
global time of the next event.

A message comprises three main components:
source —designating the originator of the message.
time —a simulation time starmp or a duration, depending on the use.

content —comprising a por? designation and a value, determined by the model
output function. This component 1s not meaningful for done and * mes-
sages.

Simulators

Simulators handle atomic models in a simulation. A simulator $:M for atomic
model M tracks the global time at which the last event occurred in .M and the
global time at which the next event will occur, based on the duration of time
provided by M’s time advance function.

A simulator receives * and z messages and sends y and done messages in
reply. A simulator S:M having devsComponent M acts as follows in response to
r and * messages:

o Upon receipt of an z message, S:M activates the external transition func-
tion of M and then respond by sending a done message to its parent proces-
sor. The done message indicates that the transition has been performed
and carries with it the simulation time of M’s next internal transition.
This time is computed by adding the value of M’s time advance function
to the time carried in the r message.
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Upon receipt of a * message, S:M activates M’s internal transition func-
tion and responds by sending a y message to its parent, followed by a
done message. The y message content contains the output port and value
computed by M’s output function. The done message indicates that the
transition has been carried out and indicates the simulation time of M’s
next internal transition.

Coordinators

Coordinators handle coupled models in a simulation. A coordinator C:M for
coupled model M tracks the global time at which the last event occurred in .M
and the global time at which the next event will occur. A coordinator also main-
tains a list of the processors for the component models of its devsComponent,
sorted according to increasing time until the next transition. The processor at
the head of this list is the processor’s tmminent child. If two or more models
have matching times, then a selection function is used to determine the order.
Ordinarily this function consults a prioritized list of the models.
A simulator receives and sends all four kinds of messages:

[ 2

Upon receipt of an r message, C:M transmits this message to each of M’s
component models that have input ports connected to the port indicated
in the message.

Upon receipt of a * message, C:M transmits a * message to its imminent
child.

When a coordinator receives a y message from its imminent child, it checks
the coupling in the model to see whether the output port in the message
is connected to an output port of the coupled model. If so, the message
is transmitted to its parent. Next, if the output port indicated in the
message is connected to an input port of any other models within the
coupled model, then the output value is transmitted to each child in an z
message directed to the appropriate port.

After a coordinator receives a done for each of the z messages it has sent
to children and the y messages it has sent to parents, then it determines
a new imminent child from among its children and sends the time for the
imrminent child’s next event in a done message to its parent.

Root Coordinators

A root coordinator controls a simulation run. Unlike the other two kinds of pro-
cessors, a root coordinator has no model attached, but a coordinator attached
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Figure 2.8: A simple hierarchical model of a job generator, transducer, and
simple processor.

instead.! A root coordinator maintains the current global simulation time and
starts the simulation by sending a * message containing the current simulation
time to the attached coordinator. When the coordinator responds with a done
message indicating the time of the next event, the root coordinator updates the
simulation clock and starts the next cycle with another * message. The coordi-
nator might send a y message to a root coordinator. This message contains the
output of the model. A root coordinator just ignores such messages by default.

2.2.3 Simulation

We illustrate the operation of DEVS on a simple model taken from [Zei90] and
shown in Figure 2.8. At the top level, this model comprises a processor model

1Zeigler describes only a cornection to a coordinator. These seems to be no reason why
a simulator cannot be attached, though perhaps atomic models are just not interesting by
themselves.
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ATOMIC MODEL: GENR

state variables: sigma = infinity
phase = active

parameters: interarrival-time = [0

external transition function:
case input-port
stop: passive
else: error

internal transition function;
case phase

active: hold-in active interarrival-time
passive: (does not arise)

output function:

T case phase
active: serd a random job name to port out
passive: (does not arise)

Figure 2.9: Pseudo-code for a job generator.

and an experimental frame model. Thne latter is a digraph model comprising
two other models, a job generator and a transducer. The job generator creates
a job every ten seconds until signaled to stop. The transducer collects statistics
about jobs—average turnaround time and throughput—by monitoring the jobs
generated and processed. The transducer model includes a clock among its state
variables to track global simulation time. Descriptions of the models are given
in Figures 2.9 through 2.12. For a more detailed description these models, see
Chapter 5 of [Zei90].

The sequence of messages to effect simulation is given below. This sequence
is quite lengthy even though a significant part of it has been deleted. We present
this level of detail in order to describe the operation of DEVS. This level is not
provided in [Zei90], and we worked for a long time to collect the information
necessary to determine how messages are generated and processed. While the
sequence below is difficult to follow because of its length, it does serve as a
reference for determining the correct operation of a simulation.

The levels of indentation in the sequence roughly match the levels in the
hierarchy. One can easily see how messages propagate down the levels, back up,
down again, and finally back up. Actions shown in italics correspond to actions
on an atomic model attached to the simulator.?

2This sequence was generated by C!IP during a run. We have included a provision for
producing LaTeX commands which can be formatted to decipher the operation of the system
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ATOMIC MODEL: TRANSD

state variables: sigma = observation-interval
phase = active
arrived-list = ()
solved-list = ()
clock = ()
total-ta = ()

parameters: interarrival-time = 10

external transition function:
advance local clock to agree with global clock;

case input-port
ariv: append job to arrived-list
solved: find job arrival time;
total-ta = clock - arrival-time;
put the job to solved-list

continue

internal transition function:
case phase

output function:
T case phase
active: average-turnaround-time =
total-ta / solved-job-number;

else: no output

active: passive - - end of observation interval

thruput = solved-job-number / clock

Figure 2.10: Pseudo-code for a transducer.

24




DIGRAPH MODEL: EF

composition tree: root: EF

leaves: GENR, TRANSD

external input coupling: external output coupling:
EF.in — TRANSD.solved GENR.out — EF.out
TRANSD.out — EF.result
influence digraph: internal coupling:
GENR — TRANSD GENR.out — TRANSD.ariv
TRANSD — GENR TRANSD.out — GENR.stop

Figure 2.11: Composition tree and influence digraph for an experimental frame.

DIGRAPH MODEL: EF-P

composition tree: root: EF-P

leaves: EF, P
external input coupling: external output coupling:
none EF.result — EF-P.out
influence digraph: internal coupling:
P - EF P.out — EF.in
EF — P EF.cut — P.in

priority list: ( P Er' )

Figure 2.12: Composition tree and influence digraph for model/frame pair.
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RC EF-P S:P EF S:GENR S:TRANSD

restartAt: Dec 1, 00:00
restarting P at: Dec 1, 00:00
restartAt: Dec 1, 00:00

send: 2°7¢ Infinity

recv: Don¢l Infinity

restarting EF at: Dec 1, 00:00
restartAt: Dec 1, 00:00
restarting GENR at: Dec 1, 00:00
restartAt: Dec 1, 00:00

send: D°'“| Dec 1, 00:00]
recv: D""‘I Dec 1, 00:00[

restarting TRANSD at: Dec 1, 00:00
restartAt: Dec 1, 00:00

recv: D°"’
send: 27 Dec 1, 00:00
recv: Donel Dec 1, 00:00

Time: Dec 1, 00:00
send: “] Dec 1, 00:00{

recv: *! Dec 1, 00:00

send: 'S'Dec—-l,om‘]
recv: "l Dec 1, 00:00|
send: *|Dec 1, 00:00

recv: *| Dec 1, 00:00[

output?() — 'Job 0’
send: ¥ Dec 1, 00:00: Job 0’|

at the lowest level. Obviously, the amount of messaging that occurs in a simulation run is very
large and being able to format that output meaningfully is of considerable help in debugging.
See Section 3.4 for details on how to produce this output.
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RC EF-P S:P EF S:GENR S:TRANSD

recv: ¥ Dec 1, 00:00: "Job 0’|
send: "l Dec 1, 00:00: "Job 0’1
recv: "l Dec 1, 00:00: 'Job 0”

ext trans fa(0 minutes, "Job 0')
ta?() — 100 minutes

send: Pon¢| Dec 1, 01:40

recv: D°""|_Dec—l,0ml
send: ¥| Dec 1, 00:00: *Job 0’|
recv: Vi Dec 1, 00:00: *Job 0’]
send: ’l Dec 1, 00:00: 'Job 0’]

recv: ?| Dec 1, 00:00: *Job 0’

ext trans fn(0 minutes, 'Job 0’)
ta?(} — 5 minutes

send: D"""l Dec 1, 00:05|
recv: Ponel Dec 1, 00:05
send: Pm¢| Dec 1, 00:05

send: D"""l Dec 1, 01:40!

int trans fa() — #active
ta?() — 10 minutes

send: D°"°! Dec 1, 00:10'

recv: Pome| Dec 1, 00:10
send: P°"¢| Dec 1, 00:10
recv: Done| Dec 1, 00:10
send: P°n¢ Dec 1, 00:05

recv: D°"‘| Dec 1, 00:05|

Time: Dec 1, 00:05
send: 'I Dec 1, 00:05]
recv: *} Dec 1, 00:05
send: *| Dec 1, 00:05
recv: *| Dec 1, 00:05
output?() — 'Job 0’
send: ¥/ Dec 1, 00:05: *Job 0’|




RC EF-P S:P EF S:GENR

S:TRANSD

recv: Y| Dec 1, 00:05. 'Job 0’]
send: *| Dec 1, 00:05: 'Job 0’}

recv: ”I Dec 1, 00:05:

"Job 0']

send: ’t Dec 1, 00:05:

"Job 0’|

recv: ’I Dec 1, 0U:05: "Tob 0’]
ezt irans fn(§5 minutes, Job 0’)
ta?(}) — 95 minules

send: D°"°l Dec 1, 01:40

recv: 2on¢| Dec 1, 01:40
send: Pon¢l Dec 1, 00:10

recv: Pone Dec 1, 00:10

send: Po7¢| Dec 1, 00:10
int trans fa() — #busy
ta?(} — forever

send: 27| [nfinity
recv:

Done
send: 2o7¢| Dec 1, 00:10

recv: D"”’I Dec 1, OO:IOi

Time: Dec 1, 00:10
send: *|Dec 1, 00:10

recv: *| Dec 1, 00:10
send: *{Dec 1, 00:10

recv: *| Dec 1, 00:10
send: *| Dec 1, 00:10

recv: *| Dec 1,

00:10

output?() — "Job I’

send: yl&c 1,

00:10: "Job 1’|

recv: ”| Dec 1, 00:10:

Tob T

send: ’l Dec 1, 00:10:

"Job 1’[
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RC EF-P S:P EF S:GENR S:TRANSD

ta?(}) — 90 minules

send; D" Dec 1, 01:40

recy: D""‘l Dec 1, 01:40I
send: ¥| Dec 1, 00:10: "Job 1’|
recv: 9[ Dec 1, 00:10: ’Job 1’]
send: ”l—ac 1, 00:10: 'Job 1’,

recv: "" Dec 1, 00:10: Job 1’]
ext trans fn(5 minutes, *Job 1’)
ta?() — 5 minutes

send: D"""l Dec 1, 00:15l

recv: 2on¢ Dec 1, 00:15
send: P%¢ Dec 1, 00:15

send: D°"‘| Dec 1, 01:40[

int trans fa{) — #aciive
ta?() — 10 minutes

send: D"’"l Dec 1, 00:201
recv: Pone[ Dec 1, 00:20
send: D°"°‘rDeT,OO:261]
recv: Ponel Dec 1, 00:20
send: P°m¢| Dec 1, 00:15

recv: D‘"“I Dec 1, 00:15|
Time: Dec 1, 00:15

send: 'lDec 1, 00:15|

recv: *| Dec 1, 00:15
* Dec 1, 00:15
recv: *} Dec I, 00:15|

send:

output?() — 'Job I’
send: ¥/ Dec 1, 00:15: "Job 1’|
recv: Vi Dec 1, 00:15: ’Job 1']
send: ’{ Dec 1, 00:15: *Job 1'|
recv: ¥ Dec 1, 00:15: "Job 1’|
send: ”lDec 1, 00:15: 'Job l']




RC EF-P S:P EF S:GENR S:TRANSD

recv: ’Dec 1, 00:15: 'Job 1’}

ezt trans fn(5 minutes, 'Job I’)
ta?(} — 85 minutes

send: D°"‘1 Dec 1, 01:40[

recv: Pon¢| Dec 1, 01:40
send: Pon¢| Dec 1, 00:20
recv: 297¢| Dec 1, 00:20

int trans fa() — #busy
ta?() — forever
send: Done

Done

Infinity

recv:

Infinity
send: "¢ Dec 1, 00:20

recv: D""‘i Dec 1, 00:20!

Time: Dec 1, 00:20

A similar pattern of messages inlervenes

Time: Dec 1, 01:35

send: 'r’ml
recv: ‘| Dec 1, 01:35!
send: *|Dec 1, 01:35
recv: '| Dec 1, 01:351
oulput?() — ’Job 9’
send: Y| Dec 1, 01:35: "Job 9’|
recv: Vl Dec 1, 01:35: 'Job 9’|
send: *| Dec 1, 01:35: "Job 9’
recv: *| Dec 1, 01:35: "Job 9’
send: ’[ Dec 1, 01:35: 'Job 9’]
recv: ’l Dec 1, 01:35: 'Job 9'l

ezt trans fa(5 minutes, 'Job 9’)
ta?() — 5 minutes
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RC EF-P S:P EF S:GENR S:TRANSD

send: D""‘m
recv: Pon¢ Dec 1, 01:40
send: D""‘[ Dec 1, 01:40!
recv: 2on¢ Dec 1, 01:40

send: P°"¢ Dec 1, 01:40

int trans frn() — #busy
ta?(}) — forever

send: Por¢|Infinity

send: Pom¢| Dec 1, 01:40

recv: D""‘I Dec 1, 01:40]

Time: Dec 1, 01:40

send: "W
recv: 'l Dec 1, Ol:40|
send: *| Dec 1, 01:40
recv: " Dec 1, 01:40
send: “I—mjl
Tecv: ‘[ Dec 1, 01:40'
output?() — 'Job 10’
send: ¥/ Dec 1, 01:40: "Job 10’

recv: yl Dec 1, 01:40: 'Job 10j
send: "[Dec 1, 01:40: 'Job 10’]

recv: Done

recv: J’lDec 1, 01:40: 'Job IO’J

ezt trans fn(5 minutes, Job 10°)

ta?(}) — 0 minutes

send: D"“‘I Dec 1, 01:40}

recv: D‘"“I Dec 1, 01:40}
send: Vl Dec 1, 01:40: "Job 10’]
recv: V| Dec 1, 01:40: *Job IO’]
send: ¥ Dec 1, 01:40: *Job 10’]
recv: ’[ Dec 1, 01:40: ’Job IE]
ext trans fa(5 minutes, 'Job 10°)
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RC EF-P S:P EF S:GENR S:TRANSD

ta¥{) — 5 minules
send: 2o Dec 1, 0145
reev: Pomel Dec 1, ()1:45!
send: D"'”[Dec 1, i)l:45§
send: D""‘[ Dec 1, ()1,402
int W#acnve
ta?{) — 10 minutes
send: U”"‘m
recy: 297 Dec 1.})1 50
send: Donel Dec 1, 01.40
recv: Pom¢ Dec 1, 01:40 ‘

send: P°7¢ Dec 1, 01:40

)

recv; D‘"‘" Dec 1, 01:40!
Time: Dec 1, 01:40

send: " Dec 1, 01:40!
recv: '[Dec 1, 01:40]
“I Dec 1, 01:40

recy:

send:

Dec 1, Ol:m
send: "1 Dec 1, 01:40/

recv: "_ Dec 1, 0140}

e e ]
oulput?(} — 3 minutes

send: Vi’ Dec 1. 0140 5 manutes:

recv: ”[Dec 1, 01:40: 5 minutes
send: ’{ Dec 1, 01:40: 5 minutes |

recv: ‘LDec 1, 01:40: 5 minutes|

ezt trans fn(f minufes. 5 minutes)
ta?() — forever

send: 2°"¢l [nfinity
recv: 277¢| Infinity |

send: Y| Dec 1, 01:40: 5 minutes]
recv: 3’[ Dec 1, 01:40: 5 minutesI
send: y[Dec 1,01:40: 5 minuteﬂ
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RC

EF-P S:P EF S:GENR

S:TRANSD

recv:

YIDec 1, 01:40: 5 minu!.es]

send: P98 Dec 1, 01:45]

send: D‘”"I Infinity 1

recv: Ponel Infinity
send: P Infinity

send: Don¢l Dec 1, 01:45

recv: D""“ Dec 1, 01:451

Time: Dec 1, 01:45

send:

’!Dec 1, 01:45}

recv: ‘l Dec 1, 01:45[

send: *| Dec 1, 01:45
recv: ‘I Dec 1, 01:45|
output?() — ‘Job 10’

it trans fa(} — #Haclive
ta?() = forever

send: Don¢| Infinity

send: ¥ Dec 1, 01:45: 'Job 10']

recv: 9[ Dec 1, 01:45: 'Job 10'}
send: ‘1 Dec 1, 01:45: "Job 10’}

recv: ¥ Dec 1, 01:45: Job 10’

send: -'[ Dec 1, 01:45: "Job 10’1

recv: Donel Infinity
send: P°n¢| Infinity
recv: Ponel [nfinity

send: P°n¢| Infinity

int trans fnf) — #busy
ta?() — forever

send: D‘""
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recv: ‘{Dec 1, 01:45: ‘Job 10';

ext trans fn(5 minules, Job 107}
ta?() — forever

send: 2o nfinity
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Chapter 3

System Design

We chose to use DEVS [Zei90] as the methodology for constructing the simu-
lation components of our system. The DEVS methodology is modular and hi-
erarchical, supporting the development of independent models that are linked.
An implementation in Scheme, an object-oriented programming language based
on Lisp, is described in [Zei90] and was to be the basis for our implementation.

DEVS-Scheme was also attractive because it was developed with running on
multicomputers in mind[Zei90, p. 62]:

... The implementation in DEVS-Scheme has the characteristics
of a “virtual multiprocessor” in that each of the processor objects
could in principle be assigned to a different physical computer. This
renders modelling in DEVS-Scheme a natural basis for implementing
discrete event models on multi-computer architectures.

We were interested in being able tc run our cutting room simulations in a
multiprocessor environment because we expected them to take quite a while
to complete when run on a desktop computer. Part of our project was to
examine ways to distribute the simulation. Research on distributing DEVS-
Scheme would simplify that task for us.?

The system comprises three main categories of classes:

o DEVS classes
s application classes

e user interface classes

'Because of our significant underestimation of the programming effort required for our
simulation, we did not get a chance to investigate distribution of simulator components. \We
note that execution time on a Macintosh (M68040 processor) running Objectworks\Smalltatk
{Version 4.1), the machine and programming language environment used for development. is
acceptable for at least the small test simulations we have run.
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A description of the main classes in each of these categories is provided in the
next three sections. The remaining sections in this chapter provide descriptions
of support for debugging and testing.

3.1 DEVS Implementation in Smalltalk-80

Our implementation of DEVS in Smalitalk-80 parallels Zeigler’s implementation
in Scheme, but differs in some aspects arising primarily from a different perspec-
tive on the application of object-oriented technologies. Zeigler’s implementation
was influenced by the view of objects presented by Scheme. His approach is to
define a class, then alter the contents of that class as appropriate for a particu-
lar model. For example, the simple processor model we discussed earlier would
be an instance of class AtomicModel whose list of state variables is augmented
by joblD and processingTime to represent the processor’s state. Our approach
uses subclassing: a class SimpleProcessor is a subclass of a class AtomicModels,
inheriting the state variables and methods required to be an atomic model, then
adding in new instance variables and methods to simulate the state and behav-
iors of a simple processor. Qur approach is cleaner from a programming vicw,
but a little further removed, perhaps, from the DEVS formalism. For exaumple,
time advance is no longer a function (object), but is a method provided by a
model object.

The implementation that we describe has evolved from an initial implemen-
tation that was faithful to the Scheme implementation. As we began to figure
out how a DEVS simulation worked, we began to refine our implementation so
that it became easier to create models. Our goal is to make the addition of new
classes of objects that represent cutting room resources as straightforward as
possible. As work progressed, we revised Zeigler’s design to suit our needs. Over
the term of the project, we reimplemented significant portions of the classes we
describe at least two times. Qur implementation could probably use one more
good review to flush out the remnants of the original design. We didn't want
to take the time away from using these classes to implement simulations, so we
never gave ourselves an opportunity for another review.

We have restricted our implementation to include only those classes that
we need for CZIP simulations—namely, the only coupled models we use are
digraph models. We have used the same class hierarchy and have defined the
same set of support classes. However, we have extended the Scheme implemen-
tation with respect to how we handle time and with respect to how we handle
instance variaoles. We have also added a special kind of digraph model that
supports dynamic change to the composition tree. In this section we describe
our implementation of DEVS in Smalltalk-80. Class specifications for all the
classes described here may be found in Appendix A.

Detailed descriptions and specifications of DEVS and application classes
described in the remainder of this chapter are provided in Appendices A and B.
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Entities {'name’ 'parent’)
Models ('processor’ 'inport’ ‘outport’)
AtomicModel ('x’ 'y’ 'sigma’ ‘phase’ 'e’)
CoupledModeis {'receivers’ ‘influencees’ 'priorityList’)
DigraphModeis {'compositionTree' 'influenceDigraph’ ‘selectFn’)
DynamicDigraphModels ()
Processors ('devsComponent’ "childProcessors’ "timeOfLastEvent’ ‘timeOfNextEvent )
Coordinator ("starChild’ ‘waitList’ "tNChildren’)
DynamicCoordinator ()
RootCoordinator ('clock’ ‘child’ 'startTime' 'timelimit’)
Simulators ()

Figure 3.1: The DEVS class hierarchy. (Instance variables are shown in paren-
theses.)

3.1.1 DEYVS Entities

The hierarchical structure of classes for DEVS entities is shown in figure 3.1.
Class Entities is common to all DEVS classes®. This class corresponds to Zei-
gler’s class of the same name and is as an abstract class, holding the common
attributes of its subclasses. The common attributes are the name of the entity
and the parent of the entity. Zeigler does not include the parent in this class, but
duplicates it in subclasses. We have elevated this common atiribuie to the En-
tities class. Zeigler includes a list of instances in his Entities class, but Smalltalk
maintains the list of instances for us so we don't include it. Below Entities in
the hierarchy are Models and Processors corresponding to DEVS models and
processors, respectively.

Models

The abstract class of models comprises two main subclasses: AtomicModels and
CoupledModels. Common attributes of these subclasses are:

e processor—the processor attached to the model during a simulation run,
e inport—a list of the input ports for the model.

* ouipori—a list of the input ports for the model.

2We have not shown it here, but Entities is a subclass of Smalltalk’s Model class, allowing
us to make any DEVS model a component of the Model/View/Controllerframework. We will
discuss this more fully in regard to the design of the user interface.
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Zeigler includes attribute cell position in this class, but that attribute is associ-
ated with kernel models, a class of model that we don’t support>.

We require each model subclass to provide a restart method that, when
dispatched, initializes the model to some base state and answers the duration
to the next internal transition. Zeigler seems to use a method initialize for
this purpose, but we reserve the method initialize for the more conventional
application of initializing an instance upon creation. Use of a separate restart
operation allows us to construct a hierarchy of models once and restart all its
components any number of times for a variety of simulation runs. By convention,
any subclass of Models that overrides restart should include “super restart” as
part of the method’s definition.

Atomic Models Atomic models comprise the leaves of the hierarchical con-
struction of models in the DEVS methodology. Recall that an atomic model is
characterized by state variables (sigma and phase), an internal transition func-
tion, an external transition function, an output function, and a time advance
function. In our implementation, state variables are represented by instance
variables and the functions are represented by methods. Every instance of
AtomicModel has instance variables phase and sigma and four methods:

intTransFn implements the internal transition function

extTransFn: aTime implements the external transition function
externallnput: aContent

outputFn implements the output function

timeAdvanceFn implements the lime advance funclion

We have omitted the state parameter from all of the functions because in our
design, each model maintains its own private state. Nor do the transition func-
tions return a state. Instead, these functions modify the state of the model
on which they are applied. Zeigler’s design represents each of these functions
as a lambda expression (Lisp function) separate from a instance and therefore
each requires a state parameter to establish a context in which the function is
evaluated. His design arises from the way in which Scheme associates methods
with instances. Smalltalk lets us use a much simpler design.

All functions except for the time advance function must be implemented by
subclasses of AtomicModel. The time advance function defined in class Atomic-
Models answers the current value of sigma. In most cases, this behavior is the
one needed, so this function definition is seldom overridden. An AtomicModel
instance has three state variables that are maintained internally:

3In DEVS, a coupled model can be either a digraph model or a kernel model (in which all
its component models are of the same class). In CZ{IP , we have needed only digraph models.
so DigraphModels is the only subclass of CoupledModels that appears in the hierarchy.

38




e the elapsed time in the current state
x the eziernal input causing the most recent event
y most recently generated content for output

Access methods exist to read and write each of these. Variables e and x are set
when the external transition function is dispatched. Variable y is set when the
output function is dispatched.

The useful actions taken by atomic models are implemented as macros in
DEVS-Scheme and as methods in class AtomicModel:

Action Method
hold-in phase for duration holdln: aPhase forTime: aDuration
passivale in phase passivateln: aPhase
passivate passivate
continue continue

Two macros supporting the generation of output are also implemented as meth-
ods in the class:

Action Method

send value to port send: aValue toPort: aPort

noQutput noQOutput

An instance of AtomicModel is created using the class method new: aString
or using class method makePair. aString, where aString designates the model’s
name. The latter method automatically attaches a simulator to the model. The
name given the simulator is the name of the model prefixed by “S:”.

Coupled Models Coupled models comprise the internal nodes of the hierar-
chical construction of models in the DEVS methodology. These models supply
the mechanism for building complex models from simpler models. Class Cou-
pledModels serves to establish a common protocol for all kinds of coupled models.
The information in an instance is:
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children the set of componeni models.

receivers associates an inpul port of this model
with the children who are connected to
il.

influencees connections between children's output
ports and tnput ports. Each component
i1s a coupling.

prioritylist used to break ties resulting from two
children having the same time lo nert
evenl. The first child in this list has
highest priority. The select function (p.
56) uses this list.

The first three instance variables appear in the DEVS-Scheme implementation.
Our implementation includes a priorityList that orders the children. The default
select function definition uses this list to determine the order in which transition
functions are invoked on children models that are ready at the same simulation
time—the earlier a model appears in the list, the higher its priority. A subclass
can override this behavior by defining its own sefectFn.

Method getChildren answers the children of the receiver—the collection of
models in the receiver’s children instance variable. The following methods are
specified by class coupledModels to be provided by -ubclasses:

getReceivers answers a list of chiliren that will re-
ceive an ezternal ev:nl inpul to the
receiver.

getinfluencees answers thz list of children to whick the

output of the imminent child is an input.

translate:model:  provides port-to-port (ranslalion—that
is, provides the inpul porl to a model
that is connecied to 1 specified output
port of another modei.

While DEVS defines a variety of coupled modeis, our implementation focuses
on only the most general kind: digraph models. Digraph models contain a het-
erogeneous mixture of children and/or non-regular couplings between children
(see [Ze190, Chapter 5].

In C{IP , every coupled model is an instance of a subclass of class Digraph-
Models. Class DigraphModels contains the fundamental instance variables and
behaviors of digraph models. Recall that a coupled model is characterized by its
children models and the couplings of ports between the children, and between
the model itself and its children as specified by: a composition tree, an influence
digraph, and a select function. In our implementation, the composition tree and
the influence digraph of a coupled mode: are represented by instance vanables
compositionTree and influenceDigraph, respectively, and the select function is
represented by a method, selectFn.

40




Processors

The class Processors has three subclasses corresponding to the three kinds of pro-
cessors in DEVS: Simulator, Coordinator, and RootCoordinator. The attributes
common to these subclasses are placed in Processors:

o devsComponent—the model attached to this processor instance during a
simulation run.

e timeOfLastEvent—the simulation time at which the last event in the DEVS
component occurred.

o timeOfNeztEvent—the simulation time at which the next event in the
DEVS component is scheduled to occur.

Each Processors instance responds to a restartAt: aSimulationTime message
that initializes the receiving processor and its DEVS component (via a restart
message). The definition for this method is a subclass responsibility. The
method must return a done message whose time supplies the simulation times
at which the processor’s DEVS component is scheduled for its next internal
transition.

Our implementation of message passing is different from that used in DEVS
and DEVS-Scheme with respect to the handling of done messages. Instead of
a processor explicitly sending a done message to its parent processor, a pro-
cessor implicitly sends the message by returning it as the reply to an z or a
* message. This convention we have adopted has the cost of slowing down a
concurrent implementation because of the synchronization involved with wait-
ing for a return message, but has the benefit of simplifying our implementation,
especially since we could dispense with managing a wait list in coordinators.
Qur implementation is slightly more efficient, and simpler, than that used in
DEVS-Scheme.

Simulators Class Simulators instances respond to the receipt of z and done
messages, replying in either case with a done message. Messages are received
via messages with selectors xMessage: and starMessage:, respectively:

o xMessage: anXMessage—verifies that the message time lies between the
time of the last event and the time of the next event. If so, then the receiver
sends its DEVS component the elapsed time, forwards the content of the
x-message to the model, applies the model’s external transition function,
updates the local time of last event and time of next event, and returns a
done message to report the time of the next event.

e starMessage: aStarMessage—checks that the time in the message and the
time to next event agree. If so, then the processor gets an output value
from its DEVS component by invoking its output function and sends the
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value in a y message to its parent coordinator, has the mode! update its
state via its internal transition funciion, updates the local time of last
event and time of next event based on the model’s time advance function,
and returns a done message to report the time of the next event.

In addition, an instance responds to a restartAt: message:

e restartAt: aSimulationTime—sets the time of last event to the time indi-
cated in the message and sends a restart message to its DEVS component.
Based on the duration returned by the model, the processor sets the time
to next event and replies with a done message carrying that time.

This message must be sent before a simulation can be run.

Coordinators A class Coordinator instance handles the processing associ-
ated with the coupled model paired with it as its DEVS component. Since a
coupled model contains other models, each connected to a Processors instance,
a coordinator has child processors determined in the obvious way. It is these
children that a coordinator manages—that is, simulation is effected by a coor-
dinator managing its children more than a coupled model managing its children
in response to transitions.

Each Coordinator instance maintains a list of children in an instance variable,
tNChildren. [The name was invented by Zeigler.] This list contains done mes-
sages rather than processors, each such message containing a simulation time
and a message originator, in this case the originator being one of the coordina-
tor’s children. The messages in tNChildren are sorted in increasing order of the
times they contain. Only one message for each child can appear in the list.

Each coordinator also maintains a variable naming its imminent child, starChild.

The imminent child is set each time a  is received and processed. This child is
a model—one of the children of the coordinator’s DEVS component.
A coordinator responds to z , * , and y messages:

o xMessage: anXMessage—verifies that the message time lies between the
time of the last event and the time of the next event. If so, then the
receiver determines which of its children have an input port connected to
the port on which the external input is arriving. To each of these children,
the coordinator sends an r message and places the resulting done message
into its local tNChildren that contains a list of done messages, sorted by
time. Thus, the imminent child appears at the front of this list. The time
of the last event is updated to the time appearing in the z message, and
the time of the next event is set to the time indicated in the done message
appearing at the front of tNChildren.

o starMessage: aStarMessage—sets starChild to the imminent child from tN-
Children and removes that child from the list. [Note that tNChildren is
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sorted by simulation time. If two or more done messages at the front of
this list have the same time, then the select function of the DEVS compo-
nent is used to determine which child is imminent.] Next, the » message is
forwarded to the imminent child’s processor and the resulting done mes-
sage is inserted into tNChildren. A wave of y and r messages ensue, then
the coordinator updates its time of last event to the time in the * message
and sets the time of the next event based on the time in the message at
the front of tNChildren.

e yMessage: aYMessage—determines the other models within the DEVS
component that are influenced by the output produced by the imminent
child and routes the content of the y message to each in an r message
to its processor. The list tNChildren is updated to include the done mes-
sage produced by each such send of an z message. Next, the coordinator
determines whether the output should be routed to the parent in a y
message—that is, whether the output generated by the imminent child
is also an output of the coupled model. If so, then the output value is
wrapped in a y message and sent to the parent. [The returned done mes-
sage is ignored.] Finally, a done giving the time in the message at the front
of tNChildren is constructed and returned to the sender of the y message.

In addition, a coordinator responds to a restartAt: message:

o restartAt: aSimulationTime—sets the time of last event to the time indi-
cated in the message and sends a restartAt: message to each of the proces-
sors for the component models of its DEVS coinponent. Each restartAt:
message is responded to with a done message and these are collected in
tNChildren. Based on the simulation time in the first entry in this list,
the processor sets the time to next event and replies with a done message
carrying that time.

This message must be sent before a simulation can be run.

Root Coordinators A RootCoordinator instance manages a simulation run
of a model by sending a sequence of * messages to a coordinator to which it is
attached. The coordinator is the root of a model hierarchy.

A simulation is constructed by attaching a coordinator to an instance of
Root Coordinator. The root coordinator must first be sent one of three messages
to reset the simulation, all of which send a restartAt: message to the attached
coordinator:

o restart—equivalent to self restartAt: (self startTime), where startTime is
assumed to have been set to a simulation time with accessor startTime:.

o restartAt: aSimulationTime—equivalent to self restartAt: aSimulationTime
andRunFor: Duration infinite.
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o restartAt: aSimulationTime andRunFor: aDuration—establishes a start time
and an end time for a simulation run—that is, the simulation run termi-
nates when the simulated time reaches the specified start time pius the
specified duration.

A simulation run actually starts when a root coordinator receives a simulate
message.

Since a root coordinator acts as a parent processor for a coordinator, it can
receive y messages corresponding to the output of the model paired with the
coordinator. In our implementation, y messages are simply ignored.

A root coordinator also contains support for a window interface. This
support—in the form of processes and semaphores—is discussed in detail in
connection with the user interface (see Chapter 3.3).

3.1.2 Extensions

In our design, we have extended DEVS to include coupled models whose compo-
nents vary over time. While this may violate the formalism of DEVS, we found
it useful for modeling the workstations at a piece of equipment. We define a
workstation to be a portion of a piece of equipment. For example, a spreading
table might be used as a single workstation for producing a long spread, and
then used subsequently as two workstations for working on two spreads simul-
taneously. Without the ability to vary the components of an equipment model,
we would either have to include a large number of components—for example,
one for each potential workstation—or we would have to implement a discrete
event simulation algorithm to model the various workstations in use at a given
time.

We have restricted our extension to digraph models, using the term dynamac
to describe the behavior. The implementation of a dynamic digraph model re-
quires the cooperation of an attached coordinator since the two objects work
together to implement the behavior of any digraph model. Consequently, the
conditions under which a coupled model can change its components are re-
stricted to those that maintain the integrity of the coordinator and all other
processors in the hierarchically structured simulation whose states are based on
the state of this coordinator. We use a subclass, DynamicCoordinator, to effect
changes in a way that is invisible to other processors.

Recall that a coordinator maintains a sorted list tNChildren that provides
information about the times at which each component model is due for a tran-
sition. One entry in this list identifies the imminent child, and the time of
next event for this imminent child is reported by a coordinator as the time of
next event for the coupled model. Thus, any change within the model must be
done between the activation of the processor with an z or a x message and the
subsequent emission of a done message by the coordinator.

It is interesting to note that a coordinator does not send z messages to a
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coupled model, but rather sends such messages directly to its component models’
processors based on information provided by the coupled model in messages such
as getinfluencees and getReceivers. Consequently, one of the component models
must take responsibility for restructuring the components of a coupled model
and, in fact, this model must be an atomic model.

An atomic model might want to change a digraph model’s component struc-
ture at any transition point, corresponding to the arrival of a * or an z message
to the coordinator for the dynamic coupled model. We restrict the decision to
change to the imminent child, an atomic model. Consider two cases:

1. The arrival of a * message signals the occurrence of an internal transition
and is forwarded to the processor corresponding to the imminent child in
the form of a * message. Since the imminent child is an atomic model, then
its simulator will invoke its output function and pass the output to the
simulator’s parent, then invoke the model’s internal transition function,
and then invoke the time advance function. Based on this time as pro-
vided in a final done message provided to the coordinator, the coordinator
determines the schedule for this atomic model’s internal transition.

If the atomic model wishes to restructure the digraph model, then it must
do so when it is the imminent child, and it must take responsibility for up-
dating the state of the coordinator. It must preserve itself as the imminent
child and is allowed only to change the internal and external couplings.
including removing and adding components in the process.

. The arrival of an r message signals the occurrence of an external transition.
The message is distributed to all component models connected to the input
port on which the message arrives. The processing required is the same
as described above for a * message.

[

Thus, an atomic model can restructure the dynamic coupled model con-
taining it, but can do so only as an imminent child and by preserving itself as
the imminent child. Consequently, a dynamic model will typically contain an
atomic model that acts as a manager for the model-—essentially a model that
monitors the activities of the other components and activates itself by becom-
ing the imminent child, taking appropriate action, and returning to a passive,
monitoring state.

This design violates the modularity of DEVS because certain atomic medels
are aware of their status as a component in a coupled model. A better design
would, perhaps, make what we have described as a manager a part of the coupled
model itsclf ciid somehow coordinate more closely with the coordinator. Qur
approach is based ox the way in which coordinatcrs interact directly with the
processors of component models of a coupled model.

Independent of the best way to include these capabilities. ii is clear that
DEVS as defined was not sufficiently powerful in providing the functionality we
needed to handle multiple, dynamically varying workstations within equipment
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models. Our -esign of dynamic entities addresses the problem by extending

DEVS.

3.1.3 Support Classes

A number of classes have been defined to support the DEVS entities and simu-
lation. These classes are presented in this section.

DEVS Messages

The four types of messages used to coordinate processing dunng a sunulation
run are structured as follows:

DEVSMessage ('source’ 'time’)
DEVSIOMessage { content’)
XMessage ()
YMessage ()
DoneMessage ()
StarMessage ()

This organization’s structure reflects the fact that done and = messages carry
no content. All messages carry a time stamp and the processor that originated
the message. The time stamp is an instance of class Simulation Time {see section
3.1.3). The model is an instance of class Processors.

A message content Is represented by an instance of class Content. A content
has two attributes: a port and a value. The value is generated by a madet and
can be any object. A port is an instance of class Port which designates a madel
and a port name. The name of a port is always represented as a Smalitalk
symbol—for example, #in. A port can be constructed by sending a comma
message to a model—for example, (M |, p) creates an instance designating port
p of model M.

We note that at some points during a simulation. a processor might be
required to send a y message even though no output is available, Like Zeigler,
we represent a null content explicitly—that is, as a Content instance that has
null port and value attributes.

Model Components

The structure of a digraph model is represented by an instance of Composi-
tionTree that specifies the coupling among the component models. An instance
represents a spectfic composition tree as defined in [Zei90. pp. 29 p. 36} Pro-
tocol provided for an instance supports the construction of the tree and the
querying of the structure and various couplings. Note that Zeigler 1s not clear
about where coupling information is stored. We have selected to store 5t in the
composition tree. An instance has five components.
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root the rool of the composttion tree.

leaves the leaves of the composition tree.

extinpCoup  the external input coupling which con-
necls the tnput ports of the coupled
model to one or more of the input ports
of the components—this directs inpuls
received by the coupled model to desig-
nated componen! models.

extOutCoup  the external oulput coupling which con-
nects oulpul poris of components o out-
pul ports of the coupled model—thus
when an oulpul 1s generated by a compo-
nent it may be sent lo a designaled oul-
put porl of the coupled model and thus
be transmatted externally.

intCoup the internal coupling which connects
output ports of components to npul
ports of other componenls—uwhen an in-
pul 1s generated by a component it may
be sent to the input ports of designated
components (1n addilion o being sent to
an output pert of the coupled model).

A coupling is represented as an instance of class Coupling which is simply an
ordered pair of ports designated as the from port and the to port.

Simulation Time

In his description of DEVS Scheme, Zeigler is vague with respect to simulation
time. In all of his examples, time is represented as an integer value that starts
at zero and progresses toward {positive) infinity, which is represented by the
Lisp atom ’inf. This representation of time was not useful for us: we needed
to keep track of date and time of day because, for example. an operator’s work
schedule is a significant factor in determining when a task is completed or when
an event in a model might occur—for example, a shift change. As a result. we
decided to treat simulation time more formally and model it in a class. As such,
we have modeled two aspects of time: a simulation time and a duration.

A simulation time is a specific date and time—for example, 1:00 A M. on |
January 1993. All times are tracked to the minute. We decided to ignote seconds
since it is doubtful that any meaningful results would come out of tracking
seconds in a simulation. A special simulation time is Infinify. indicating a time
very far in the future.

We distinguish a simulation time as just described from a duration of time. A
duration is a length of time—for example, five minutes or ten days. All models
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maintain sigma as a duration. An infinite duration is sometimes denoted as
forever.
Some arithmetic operations are defined on simulation times and durations

SimulationTime — SimulationTime — Duration

SimulationTime + Duration - SimulationTime
SimulationTime — Duration —  SimulationTime
SimulationTime + Duration —  SimulationTime
Simulation Time ~ Duration —  SimulationTime
Duration + Duration —  Duration

Duration — Duration —  Duration

Duration + SimulationTime —  SimulationTime

If any of the operands are infinity or forever, then the result s tnfinty or forever,
as appropriate. Relational operators for comparing two simula.jon tines or two
durations are also defined. Comparing infinity to infinity. or forever to forever,
is undefined.

Our use of these classes was a convenience in coding up our models of cutting
room resources. We augmented the predefined Smalltalk class Number with a
set of methods to facilitate the creation of durations. The messages minute(s).
day(s), week(s), and month(s) sent to a number answer a duration.

The classes associated with simulation time and duration are: Simulation-
Time, Infinity, Duration. and infiniteDuration. Class descriptions may be found
in the appendix.

Miscellaneous Classes

Just as we found 1t convenient to define classes to moedel simulation time. we
defined classes to represent lengths—inches, feet. and vards. Class Length cm-
bodies this concept. As in the case of Duration, we have added methods to class
Number to facilitate the creation of lengths—for example. 3 vards produces an
instance of length. Arithmetic is also defined for lengths—adding and subtract-
ing lengths is supported as is multiplying and dividing lengths by a number. We
do not support the multiplication or division of two lengths  [We didn’t want
to get involved in tracking units—for example. recognizing that the produet
of two lengths is an area—because it was not necessary for the simulations we
were trying to construct.] The class description for Length may be found in the
appendix.

3.2 Application Classes
Application classes comprise those subclasses of Models representing the cut-

ting room and its resources. The main kinds of models in the cutting room
application fall into four main categories:
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¢ Plans and tasks

e Cutting room

e Equipment and workstations
e Resources

We describe each of the main classes.

The classes in the hierarchy relating to application objects is highlighted in
Figure 3.2. Note that the class Entities is a subclass of Model®. This allows any
DEVS entity to be used as a model in connection with views as described in
Section 3.3.

3.2.1 Plans and Tasks

The simulation is controlled by a plan that details the tasks to be performed
and the operators and materials assigned to perform them. The purpose of a
simulation run is to model the result of the plan in a particular cutting room.

A plan is a sequence of work assignments. Each work assignment comprises
a task, operators to perform the task, and a workstation on which the task is
to be performed. Operators can be specified to perform a task individually or
together with one or more others. Additionally, several alternative assignments
are possible so that, for example, one of several operators might perform the
task, depending on availability®. A task is a description of a job to be performed,
including one or more materials to be used for the task. For example, a task
might be to spread thirty 5-yard layers of white cotton fabric, taking the fabric
from two specific rolls. A work assignment would associate that task in the
plan with an operator and a workstation. A workstation is simply a portion of
a plece of equipment—f{or example, the spreading task might be performed on
the left half of a spreading table.

The work assignments in a plan are to be performed in the order in which
they appear. Associated with each work assignment is a status of completion—
unstarted, in progress, suspended, and completed. Initially all work assignments
are marked unstarted. Given a plan P, a set of operators 0. a set of materials
M, and a set of equipment £, do the following until all work assignments are
completed:

41 is unfortunate that we use two classes with very similar names, Model and Models. Th-
former is defined by the Model/View/Controllerframework. The latter is the corresponding
DEVS entity. It is interestiag that Zeigler uses the same name (with an “s"} for this class
The reader is urged to note the distinction between the two names. In general. we will us~
the term model to refer to DEVS entities unless otherwise noted.

5Qur current simulation does not take advantage of this facility because it complicates the
routing of operators to workstations.
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Object

Model
Entities
Models
AtomicModel
Dispatcher
Equipment
CuttingMachine
AutomaticCutter
BITECutter
LaserCutter
ManualCutter
SpreadingMachine
AutomaticSpreader
Table
CuttingTable
SpreadingTable
Planner
CoupledModels
DigraphModels
DynamicDigraphModels
Room
CuttingRoom
Warehouse
Processors
Coordinator
DynamicCoordinator
RootCoordinator
Simulators

Figure 3.2: CP application classes (boldfaced).
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For each operator o in O that is available at the current time,
associate o with the next work assignment that is not completed and
that entails o.

For each material m in M, associate it with the next work as-
signment that is not completed and that entails the use of .

For each work assignment w that is unstartred or suspended,
with which sufficient materials and operators are associated, and
for which the required workstation is available, mark w as being in
progress.

If the operator must leave the worksiation before the task is
completed, then mark the task as suspended and return the operator
to 0.

If a task is completed, then mark the work assignment for 1t
as completed and return the operator to Qand any unconsumed
materials to M.

Under this discipline, each operator extracts the tasks on which he is sched-
uled to work and does them in order, realizing that some tasks might be com-
pleted while he is off-duty or on break. Similarly, materials are moved around
the cutting room from equipment to equipment, depending on where that ma-
terial is next to be used. The appearance of various resources—operators and
materials and equipment—in the plan place a partial ordering on work assign-
ments. This algorithm preserves that ordering, except that in the case in which
alternative operators oy and o02) are specified for a given work assignment w. and
o0i starts work on the task, then o; (j # ) can start work on a task appearing
subsequently in the plan, later to return to complete w.

Some tasks require the output of a prior task as materials—for example.
cutting tasks gemerally depend upon the completion of spreading tasks. We
represent the result of tasks by tickets that are defined in work assignments. A
ticket may appear as a required resource in a task. The relation between ticket
definition and ticket use also creates a partial ordering on tasks that must be
followed in carrying out a plan.

As an example, consider a portion of a plan involving three operators, three
rolls of fabric, and two spreading tables:
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Task Workstation | Operators | Ticket

N

Huey E}

1. | Spread 4 layers of fabric A,
then 4 layers of fabric C. Table 1

[~}

2. | Spread 10 layers of fabric B. Dewey

Table 2

}

3. | Spread 6 layers of fabric A. Louie L3

Table 2

N

4. | Cut . Dewey E&]’

Tabie 1

The equipment column shows a workstation as a shaded portion of the whole.
We designate and represent a workstation internally just that way. A ticket
is not required if the result is not of interest, though in this case we need to
process the result of each task.

Our current design includes four tasks, each of these is represented by a
subclass of the abstract class Task.

e Spreading—expressed as, “Spread { roll;, rollz, ..., roll,} following tem-
plate T,” where the template specifies how the spread is to be constructed
and the fabric rolls satisfy the requirements for fabric specified in the tem-
plate. The product of this task is a spread.

e Cutting—expressed in terms, of "Cut spread,” where the spread is an
instance of Spread or a ticket that represents a spread product of some
task. The product of this task is a set of stacks.

o Moving—expressed in terms of, “Move object to workstation,” where the
object is any material (including a ticket) and workstation designates a
workstation, usually one at the same equipment. This task represents an
operation such as sliding a spread from one end of a table to the other
or positioning a cutter at the end of one spreading table to the end of
another.

1

e Bundhing—expressed as. “Bundle set of stacks,” where the set of stacks is
an instance of StackSet or a ticket that represents a set of stacks produced
as a result of some task.




A task must be able to compute the time needed to complete it by the
operators at the workstation. A task also tracks its completion status as a
fraction of the whole. This fraction—represented as a percent—is determined
by the operator and the materials that contributed to the level of completion so
far. Thus, a task that is half-completed by one operator in an hour will require
two hours to complete by another operator who works at half the efficiency at
the task as the first operator.

3.2.2 Cutting Rooms

A cutting room model is a digraph model comprising a model for each piece of
equipment and three special models:

e A Break Area in which each operator resource resides when it is off-duty—
that is, on break or not at work. However, an operator might be idle. but
by a piece of equipment instead of in the break area because an on-duty
operator waits by the equipment containing the workstation at which his
next task is to start. (The algorithm we use was described in Section 3.2.1.;
All operators are in the break area when a siinulation run starts.

e A Drop Area in which each material resource resides when it is not required
for a task. All resources are in the drop arca when a simulation run starts.

e A Planner that holds the plan controlli-.« the simulation. For historical
reasons, this component is called “Osc.t” and roughly corresponds to
the cutting rcom manager. This comjnent disseminates the plan for
performing the various cutting room tasks< 10 other simulation components
and collects simulation results.

This organization is illustrated in Figure 3.3.

CuttingRoom is a subclass of Room, whicl is an abstract digraph model
class. A CuttingRoom instance contains e:yi::pment specified at the time of
instance creation and the three special models described above. Oscar is an
instance of a class Planner that has an output port #plan; connecting to the
#plan port of the break room, the drop area, and each equipment model (see
Section 3.2.3). The plan is distributed to all other component models of a cutting
room via these connections. A planner has an output port #result through which
statistics about the plan are produced when all work assignments in the plan are
completed. The plan held by a planner is sent over each #plan;, i = 1,2,...n.
where n is the number of other models in the cutting room {equipment, drop
area, and break area), when a plan is received on its input port #start. Statistics
about the plan are computed based on inputs on its #done input port. These
inputs are instances of class WorkAssignmentStatistics that provide information
about the start and end times of the task it includes.

The drop area and the break area in a cutting room are instances of class
Dispatcher. A dispatcher is an atomic model that manages a pool of resources,
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Figure 3.3: Cutting room model components and their connections.
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dispatching a resource to another model in accordance with some plan. A
dispatcher has two input ports, #plan and #in, and n output ports: #out,,
#outy, ..., #out,. Port #plan is an input port on which a plan is to be received
that drives the routing of resources to and from the dispatcher. Resources arrive
on port #in and are dispatched to other models on an #out; port.

Each output port is assumed to be routed to one model. The association
between model and output port is stored in a dictionary (mappingDictionary)
and is established at instance creation using the models provided. For example,
if the models are my and my, then an association between #outl and m; and
between #out2 and m, is made. When a resource arrives on #in, and the
plan reflects that the resource should be routed next to m,, then the resource
is output on #outl based on the dictionary association of m; and #outl. A
CuttingRoom instance ensures that connections are correct.

Every resource in a dispatcher must be able to answer the message whereNext:
aPlan, providing the next work assignment in which the receiver is to be used.
An answer of nil designates that the resource has no more uses within the plan.
No resource is dispatched until it is available for use—for example, an operator
who is off-duty

At the start of a simulation, all operator resources are placed in the break
area and all material resources are placed in the drop area. Each dispatcher
instance sends resources to the equipment model containing the workstation at
which that resource is first used, based on its reply to whereNext: aPlan. When a
model no longer wants a resource, it routes the resource back to the appropriate
dispatcher.

3.2.3 Equipment and Workstations

Instances of class Equipment—or more properly, instances of its various subclasses—
model pieces of machinery. An equipment model has three input ports:

o #plan on which a plan arrives before any other inputs are accepted
e F#optrin on which operators arrive
o #matlln on which operators arrive
and four output ports:
o #done on which statistics about a completed work assignment is emitted

e #product on which 4 completed product is emitted

#optrOut on which operators are emitted

#matlOit on which materials are emitted
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Equipment

done
plan >

product
optrin

optrOut
matlin

matiOut

Figure 3.4: An equipment model.

Working

emit used materials emit statistics

0\)

emit emit busy operators emit product

Figure 3.5: States of an equipment model.
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Equipment has behavior such that if it has a work assignment in the plan
that is still not completed, and sufficient resources and operators are available
at the equipment to perform the work assignment, and the workstation for the
assignment is available, then work on the task is begun. Upon completion of a
work assignment, statistics are emitted on port #done, the product is emitted
on #product, the collection of operators who performed the task are emitted on
#optrQut, and the collection of materials—what’s left of them—is emitted on
#matlQut. It is sometimes the case that an operator at a workstation, or an
operator in the wait area, goes off-duty. In that case, the operator is emitted
on #FoptrOut and any task on which he was working is either suspended or is
resumed by another on-duty operator in the wait area.

When a resource arrives at equipment, it 1s put in the wait area and then a
check is made to see if an uncompleted work assignment in the local plan—those
work assignments for this equipment—can be started based on the presence of
all required resources in the wait area and the availability of the workstation
specified®. When a work assignment is started, eligible operators in the wait
area not selected for the task are emitted on port #optrQut (where they are
routed to the dispatcher).

Every piece of equipment comprises a set of workstations. For this class,
only one workstation can be active at a time. (See subclasses for equipment
that can support multiple active workstations.)

Each piece of equipment has a wait area at which idle operators and materials
wait for the start of a task specified in a work assignment. The wait area is
represented by instance variables waitingOperators and waitingMaterials.

Equipment has the phases and transitions shown in Figure 3.5.

3.2.4 Resources

Resources comprise the operators and materials to be allocated to a set of work
assignments. Class Resource is an abstract class that contains Operator and
Material as subclasses. Resource establishes common state and protocols to
determine:

e job—the work assignment in which this resource is participating (if any)
e equipmeni—the equipment at which this resource is stationed (if any)
e status—the current status of this instance: #busy or #idle

e image—a pixmap that provides a picture of this resource in its current
state.

The images are stored in a dictionary and retrieved using the current status as
a key.

8The current implementation insists that work assignments be started in their order in the
plan. However, this is not necessary as long as the partial ordering is preserved, This was
just an implementation convenience
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Operators

Operators are resources that model the hehavior of workstation operators. An
operator is not a DEVS entity, but an object that is passed between models
and affects their states. QOperators are unusual objects in this systern in the
sense that they are autonomous, acting based on the circumstances in which
they find themselves and changing state independently of where they are based
on simulation time—for example, quitting work for the day when a shift ends.

We have addressed this autonomy by making operators passive components
and having all models that base their states on operators—equipment mod-
els and dispatcher models—be aware of operator state. For example, a dis-
patcher model will consult with each operator object it wishes to dispatch.
asking whether it is available at the current simulation time and dispatching it
if it 1s, or basing an internal transition on the time at which it becomes available
if it is not. In short, models that use operator resources consult the operators
as part of their transition functions.

As a passive object, each operator must be able to respond to two messages:

e availableAfter: aSimulationTime to which the receiver answers the duration
until it is available after the time indicated

o availableAt: aSimulationTime to which the receiver answers whether or not
it 1s available at the time indicated

Thus, an operator instance need only know its work schedule to respond to these
messages.

Operator instances have other operations as well, such as being able to an-
swer its efficiency at a gfven workstation and the various tasks it is asked to
perform.

Materials

Materials are resources that are consumed or produced in a cutting room—for
exampie rolls of fabric, markers, spreads, stacks, and so on. The class Material
serves as an abstract class and all materials are instances of its subclasses.
Unlike operators, materials are passive, manipulated by the models.

Certain equipment resources must be considered materials—namely, hand-
held equipment such as rotary shears. These items do not function in the same
way as other equipment. For one thing, they do not support workstations. For
another, they can be moved around just as materials.

3.3 User Interface

The user interface classes provide support for windows that display a simulation
run in progress and buttons for controlling a simulation run. The interface is
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Object
VisuaiCom . onent
VisualPart
DependentPart
View
CuttingRoomSimulationView
DEVSRunView
DEVSView
ModelsView
AtomicModelView
DispatcherView
EquipmentView
PlannerView
SimpleProcessorModelView
TransducerModelsView
ProcessorsView
CoordinatorView
RootCoordinatorView
SimulatorsView
SimulationRunView

Figure 3.6: User interface classes.

based on the Model/View/Controllerframework. The simulation model is a
subclass of Model. The simulation window contains instances of classes View
and Controller.

The user interface classes comprise views of some of the DEVS and appli-
cation classes. All of the user interface classes are subclasses of the class View
defined by Model/View/Controller. The hierarchy is shown in Figure 3.6.

3.3.1 Simulation Run Views

The window placed on a screen to show a simulation run is an instance of
SimulationRunView. An instance is created with the message openGn: which
takes an instance of a root coordinator as its parameter’.

A simulation run view creates a window on the screen containing a view for
each atomic model in the tree connected to the root coordinator. The window
also displays a pane for the root coordinator that displays the simulation time
and other simulation run information.

"In the current design, a scenario is a root coordinator, but a scenario .lass should have
been defined!
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A simulation run view provides four buttons for controlling 4 sunulation

Restart sends a reset message to the root coordinator.
Go sends a message go to the root cootdinator

Pause sends a message pause to the root coordinator
Step sends a message step Lo the root coordinator

The meanings of these buttons are descrnibed in the User’s Manual  These
buttons can be used at any time, though the Restart button generaily can be
used only cnce at the beginning of a simulation run unless all of the muodels
and processors involved have stored their start states to pernut reseting In
addition, all consumed materials must be re-created. 5o restarting 15 a nentrivial
operation, in general. We have included the button in our design primandy o
help us with debugging.

The placement of the various views in the window is hard-coded for our pro-
totype. An interface should be defined for more exphcit layout of the various
views, perhaps with an interactive component. This capability entails more pro-
grammung than we could address within time constraints. Ideally. any model’s
view could be placed anywhere within the window. Similarly, coupled mod-
els could have their component models arranged arbitrarily within the model’
boundaries. The Smalltalk class library supports such operations, but we were
unable to take advantage of this because it took us a long time just to figure
out how to get the rudimentary set of views installed in a window®

The various views installed in the window display bitmaps intended to por-
tray the status of the model. Consequently, every DEVS entity must be able to
provide an instance of Pixmap [or one of its subclasses) in response to a state
message.

3.3.2 Models Views

Class ModeisView provides an abstract class from which all other model view
classes inherit. This class provides a pixmap comprising a rectangle labeled with
the name of the model provided upon instance creation. The size of the rectangie
15 determine by the messages defaultWidth and defaultHeight. A subclass can
override these methods to change the size of the pixmap.

Each model view has a rectangle in which subclasses can place additional
information. This rectangle is accessed by subclasses using the message inse-
tRectangle. The origin and corner of the inset rectangle can be used to determine
where subclasses can put additional state information.

A subclass of ModelsView is defined for atomic models and for digraph mod-
els.

81n fact, we were unable to eliminate a bug in our implementation with respect to the
buttons. For some reason, the window must be scrolled to the top before any button press
will take effect.
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Atomic Model Views

{nstances of the class AtomicModelView display the current values of ¢ sigma
and r for the model.

3.3.3 Processors Views
3.3.4 Synchronization of Views and Simulation Runs

A root coordinator and a view must synchromze their operations. When receiv.
ing a go message, a root coordinator spawns a process to perform a simulation
run. The view controls this process by sending messages (o the root coondinator
These messages are:

e reset—restart the sirnulation

» pause—interrupt the simulation on the next iteration of the loop that
advances global time

e step—run an interrupted simujation one time step
e resume—continue running an interrupted simulation

These messages control the actions taken by the simulation run process and
are translated by the root coordinator into actions on its current mode that
reflects one of five states for a run:

e idle—not yet initialized, or run completed
o ready—initialized, but not yet started

€ TuUnRIRg—IUN in progress

» suspended—run suspended

e slepping—running a single step

The mode is set using accessors mode and mode: which implement critical
regions using a semaphore modeSemaphore to ensure exclusive access. An ad-
ditional semaphore, controlSemaphore, is used to suspend the simulation run
process when the mode is not running.

This design using a separate process and semaphores was necessary to get
the interactive behavior that we wanted in the Objectworks environment. The
Model/View/Controllerframework is designed based on a transaction-oriented
model that cycles between user-initiated stimulus and model response. Our
system requires that the system be able to operate—-that is, run a simulation—
freely on its own, providing the opportunity for user intervention.
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3.4 Debugging Support

The system contains code to support debugging 1 both the form of logging
message tratfic between processors and models. and in the form of an interactive
user interiace.

3.4.1 Logging Messages

Messages sent and received by the entities in the system can be fogged by sending
the name of an open write stream to the class Entities {or any of 1ts subclasses)
via the message logStream:. The output is text written to the stream. one
message per line. For example, the following sequence will log messages to the
file to0.log:

Processc.s logStream: 'foo log’ asFilename writeStream
The file can be closed by sending nil or another stream object as the parameter
Processors logStream: nil.

Logging output is also available 'v WTEX format by sending true as the
parameter 1o a teXFormat: message:

Procassoi s teXFormat: true.

The format c¢..1 be cancelled by sending false as the parameter. The output
makes use ot + number of macros that can be defined {or convenience. These
macros {all into two general categories:

1. General DEVS components. These are the macros that pertain to mes
sages an:i their contents—messages sent and received, ports. times. and
contents

\logMessage{tert}

\sendingMessage{targe! entity}{content}
\logTime{time}

\receivedMessage{ content}

\outputEh{value}

\timeAdvanceEh{duration to nest transition}
\extTransFn{elapsed time}{input value}
\intTransFn{new phase}

\port{model name}{port symbol}
\Content{port}{value}

\DEVSMessage{lype }{ orrginator}{time}
\DEVSIOMessage{type}{originator}{tame} {ralue}
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. Simulation-specific components. These are macros whose natiies are taken
from the names of the models and processors 1 a sunulation. The macro
name corresponds to the name of an enuty —for example. a madel named
M is represented by the macro \M and i3 sunulator S M by the macro
\SM. {Any non-alphabetic character is removed from the name to satisly
TpXnaming conventions.) Each of these macros has one argument, the
operation being logged by the component associated with the name-for
example, \SM{\receivedMessage{ . . }}

The macros below were used to produce the output i Section 2 2.3

\nevenvironment {CLIP}{

\begin{tabbing}

xxxx2x = xxxxxx\ s XxxLX2 CXXAXXXNEXXXIXXXXEXXTN=xxxXxx \K1ll
H

\end{tabbing}

¥

\newcommand{\RC}[1]{21 \\}
\newcommand{\CEFP}{1]J{\> #1 \\}
\newcommand{\SP} [1]{\> \> #1 \\}
\nevcommand {\CEF} {1J{\> \> \> #1 \\}
\newcommand{\SGENR}(11{\> \> \> \> #1 \\}
\newcommand {\STRARSD} [11{\> \> \> \> \» #1 \\}

\newcommand {\PRGCESSOR}[11{\> \> {\em #1} \\}
\newcommand{\GENR}[1J{\> \> \> \> {\em #1} \\}
\newcommand{\TRANSD} [11{\> \> \> \> \> {\em #1} \\}

\newcommand{\logMessage}{1]{#1}
\newcommand{\sendingMessags} (2] {send: #2}
\newcommand{\logTime}[1]{\rule{0em}{46x}{\b? Time: #1}}
\newcommand{\receivedMessage}[1]{recv: #1}
\newcommand{\outputEh}[1]{output?(} $\rightarrow$ #1}
\newcommand{\timeAdvanceEh}[1]{ta?{() $\rightarrow$ #1}
\newcommand{\extTransFn}{2] {ext trans fn(#1, #2)}
\newcommand{\intTransFn}{1}{int trans fn() $\rightarrow$ #1}
\newcommand{\port}[2]{#1.#2}
\newcommand{\Content} [2] {#2}

\newcommand{\DEVSNessage} [3]{$-{#1}$\tbox{#3}}
\newcommand{\DEVSIOMessage}[4] {$-{#1}$\tbox{#3: #4}}

The output of the simulation run is formatted in a CLIP environment. Note that
the simulation contains a processor model P and we had to rename the macro
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\P to \PROCESSOR to avoid the predefined macro for the paragraph svinbot (45
Alternatively, we could have just renewed command VP

3.4.2 Debugging Views

In addition to logging messages to a file, we have implemented views for wter
actively monitoring the activity of DEVS entities. These views are subolissses
of View and one class exists for each kind of DEVS processor

Object
VisualComponent
VisualPart
DependentPart
View

ProcessorsView
CoordinatorView
RootCoordinatorView
SimulatorsView

Each of these views display the instance variables of their corresponding DEVS
entities—for example, a SimulatorsView instance displays sigma. «lapsed timen
the current state, the most recently received r message, and the most recently
sent y for its model.

These views are installed within other views and each is attached to the
appropriate model upon creation via the new: aModel message sent to the class
For convenience, each DEVS class responds to the message view with the class
appropriate for itself—for example, an atomic model responds with the Simula-
torsView class.

These views are most useful for debugging and are currently a part of class
SimulationRunView instances because we have been debugging. At some point,
these views should be removed. It is more appropriate to have separate win-
dows providing application and debugging views of a simulation run. That
design occurred to us late and we were unable to make the changes required
(straightforward and simple as they are) within our time constraints.

3.5 Testing Support

Test cases are provided in some class comments, generally 1n a section labeled
Testing. Some classes require a substantial amount of setup—for example. com-
plex networks of objects—so test cases are not provided for them.

The experimental frame example used by Zeigler to describe the various
aspects of DEVS has been the basis for our testing of the DEVS components of
our system. This model hierarchy is embodied in the classes SimpleProcessor.
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Generators, and Transducers {see Appendix ). We did not unplement classes 1o
explicitly model experimental frames (EF) or experimental frames connected to
stmple processors. Instead, these digraph models are constructed exphestly i
a code sequence found in file simpleTest. This code parallels the construction
used by Zeigler.

Class DEVSRunView provides a windew for a run of this model bierarchy
The window is laid out with a column of views on processors down the left side
of the window and a column of views of models down the right. The processor
and model views appearing in the same row are paired. This view ailows one
to watch the message traffic between processors as well as the state changes 1o
the atomic models.

To run this test, open the file simpleTest in a file editor window, seject
all the text, and select do it. [The text of this file is given in Appendix
The program opens a window containing a view of the various components of
the model and execution begins after the selection of Restart and then Gu
The statistics collected by the transducer are printed to the Iranscript window
These results should match the following:

SEERBRERREE A A B CEBE SRS SR RE SRS R TN
The arrived list:
'Job 5'->50 minutes
'Job 0'->0 minutes
'Job 27->20 minutes
*Job 4’'->40 wminutes
‘Job 1'->10 minutes
‘Job 3'->30 minutes
’Job 8'~>80 minutes
'Job 7'->70 minutes
'Job 8’->80 minutes
'Job 97->90 minutes
'Job 10’->100 minutes
The solved list:
’Job O
*Job 1°
'Job 2°
'Job 3°
'Job 4’
’Job 5’
’Job &'
'Job T°
*Job 8’
*Job 9!
Avg. turnaround time: § wminutes
Throughput: (1/10)
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Appendix A
DEVS Class Specifications

Specifications for DEVS classes are provided in this appendix. These classes are
in the DEVS-Simulation Category in the image st80~C1IP.
A class specification follows the format:

Superclass subclass:

Class

A comment aboul the purpose and usage of the class.

instance variable
inheritedInstance Variable

instance method category  newlnstanceMethod
inheritedInstance Method
gverriddeninstanceMethod

class method category newClassMethod
inheritedClassMethod
overriddenClassMethod
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The classes in the DEVS component of CZIP are structured as:

Entities [68]
Models {80]
AtomicModel {88]
CoupledModels {82]
DigraphModels {84]
DynamicDigraphModels [86]
Processors {69]
Coordinator [73]
DynamicCoordinator {75]
RootCoordinator [77]
Simulators {71]

The number in brackets following each class name is the page number on which
the specification starts.
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Model subclass:

Entities

Entaties are the root class in DEVS. This 1s an abstract class that comprises

Models and Processors.
Instance variables:

name < String> ~—the name of this entaty
parent < Entities> —the parent of this entaty.
Class variables:

LogStream < WniteStream> —stream to which logging 1s (o
occur. or nd.  Used by some
subclasses

TeXFormat < Boolean> —log oulput in a TeX formal

name

parent

accessing compositePart
name

displaying state
visualComponent

initialize-release initialize

printing printOn:

. . printString
private-accessing name:

parent
parent:

. teXName
private-logging 1sbogging
instance creation Ist

new
. new;
logging access isLogging
logStream:
teXFormat:
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Entities subclass:

Processors

Abstract class for a DEV'S processor (see Zrrgler Sec 3 5. 41 This class provudes
protocols for linking models tn a hterarchy and tracing a simulation run Tracing
1s enabled 1f traceStream has o value other than nil

Yole that we use ‘restart’ rather than ‘mstialize” for model tmitialization e
use ‘tnitealize’ in the convenlional way lo initralize an instunce, resturt’ 15 used
to reset an instance for another simulation run.

My subclasses are:

RootCoordinator
Coordinator
Swimaulators
Instance variables:
devsComponent < Models> —my model
childProcessors <Sel> —my direct Processors  class
descendents

timeQOfLastEvent  <SimulationTime> —the time of the {ast event
timeQfNeztFvent  <SimulationTime> —the time of the next event

lastSentMessage < String> —the last message fo be sent
lastReceivedMessage < String> —the last message to be recerred
name
parent
devsComponent
childProcessors
timeOfLastEvent
timeOfNextEvent
last ReceivedMessage
lastSent Message
accessing childProcessors
lastReceivedMessage
lastSentMessage
processor Tree
processorTreeLeaves
timeOfLastEvent
timeOfNextEvent
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DEVS

displaying

initialize-release
printing

private-accessing

private-logging

views

3 T8
devsComponent
devsComponent:
linkToParent:

restart At:
state

visualComponent
inifialize

printOn.

prin{String
child:

lastReceived Message:
tastSent Message:
parent:

processors
timeOfLastEvent:
timeOfNextEvent:
log:

logReceipt:
logSend:to:
logTime:

view

instance creation

logging access

Ist
new
REewW,

1sLogging
logStream:
te XFormat:
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Processors subclass:

Simulators

A simulator controls an atomic model (see Zergler section 3.5.3 and section 4.5}
Instance variables:

None.

name

parent

devsComponent

child Processors

timeQOfLastEvent

timeOfNextEvent

lastReceived Message

lastSentMessage

accessing processorTree Leaves

DEVS restartAt;
starMessage:
xMessage:

displaying state
nisualComponent

initialize-release inttialize

printing printOn:
printString

private-accessing child:
lastRecerved Message:
lastSentMessage:
parent:
processors
timeOfLastEvent:
timeOfNeziEvent:

private-logging log:
logReceipt:
logSend:to:
logTime:

protected-accessing child:

) processors
views new
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instance creation st
Rew
e
logging access tsLogging
logStream:

te XFormat:
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Processors subclass:

Coordinator

A coordinglor 1s a4 processor for 4 coupled model
[nstance variables.

starChud < Processor> ~{the immainent chAuld the nest
one Lo gel g mess e

watlst < OrdevedCollection>—processors  watling  fur nies-
sages nol used.  we are do-

ing sequentoal erecuticn se oniy
starChild would ever be 1n thas
fist]

INChildren <sSortedCollection> —a list of my chudren ordesed
by increasing time of the nest
event. Actually. a hst of done
messages.

Note: When a coupled model 15 creatled, then its chidren’s processors are linked
as a tree, so there’s no need to override method inkToParent " in this class

name

parent

devsComponent

childProcessors

timeQfLastEvent

timeOfNertEvent

lastRecerved Message

lastSentMessage

starChild

waitList

tNChildren

accessing processors
starChild
tNChildren

DEVS restari Al
starMessage:
xMessage:
yMessage:

displaying slate
nisualComponent

initialize-release mihiahze
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printing
private

private-accessing

private-logging

views

printOn:
printString
nextGuy

starChild:
haid

lastReceived Message:
lastSentMessage.
parent.

processors
timeUflLastEvent:
timeOfNextEvent:
log:

logRecespt:
logSend:to:
logTime:

Liew

instance creation

logging access

Ist
new
new:

1sLogging
logStream:
teXFormat:




Coordinator subclass:

DynamicCoordinator

A dyramic coerdinalor 1s a coordinator tha! suppoerts simulation of a coupled
mode! that changes dynamically-that 15, that changes ils component models as
stmulalion progresses.

A dynamic coordinator adds operaiions to add and remove sub-models. The
methods 1 this class update the processor only. [t is the sender’s responsibuity
to updaie the model correspondingly.

An added component cannol become the immanent child and a removed compo-
nent cannot have been the tmminent child. An easy way to meet these restric-
tions 1s for a dynamic digraph model to contain g persistent model that performs
updates during an internal or external transition.

A dynamic coordinalor s our own invenlion. Zeigler defines no such object.

Note that this implementation 15 incomplete.

name
pareni
devsComjonent
childProc: ssors
timeQfLaxt Event
timeQfN-ztEvent
lastReceiv: dMessage
lastSentl. ssage

starChild

wattList

tNChiidren

access-dynamic addChildModel:

. removeChildModel:

accessing processors
starChild

DEVS e
starMessage:
tMessage:
yMessage:

displaying state
visualComponent

initialize-release mstialize

printing priniOn:
printString
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private

private-accessing

private-logging

views

nextGuy
starChild:
child:

lastRecervedMessage:
lasiSentMessage:
parent:

processors
timeQOfLastEvent:
trtmeQOfNeztEvent:
log:

logRecept:
logSend:to:
logTime:

view

instance creation

logging access

Ist
new
new:

1sLogging
logStream:
teXFormal:
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Processors subclass:

RootCoordinator

A root coordinglor controls a ssmulation. Il serves as the root of ¢ hierarchy of
DEVS models and conlains one child, etther a coordinator {coupled model) or a
simulator (atomic model).

Method 'linkToParent:’ 1s used instead of 'instialize’ descrided by Zergler p. 66.

Instance variables:

clock < SimulationTime> —the current global clock
child < Processors> —the single chud processor-
coordinator or simulator. We
use this for conventence, rather
than ’childProcessrs first’
timeLimat < SimulationTime> —the lime at whick a simulation
run 1s to slop
mode < Symbol> —the current mode:
#idle — not yet run or completed
#running — rum in progress
#suspended— run suspended
#stepping — running a single step
processes < Set> —the set of processes created.
Fach run requires the creafion
of a process. This process 1s
ferminated when an instance
is released, usually when the
window is closed via method
‘change Request’.
modeSemaphore < Semaphore> — Used for mutually exclusive ac-
cess 1o mode
controlSemaphore < Semaphore> —Used to control each iteration
of a run
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name

parent

devsComponent

child Processors

timeQOfLastEvent

trimeOfNeztEvent

lastRecetvedMessage

lastSentMessage

clock

child

startTime

timeLimit

mode

traceText

runView

processes

modeSemaphore

controlSemaphore

accessing child
clock
clock:
startTime
startTime:
timeLimit:

changing changeRequest

DEVS linkToParent:
restart
restartAt:
restartAt:andRunFor:
simulate
yMessage:

displaying state

initialize-release initialize

, release

operating go
pause
reset
resume
run
step

printing printOn:
printString
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private-accessing

private-logging

private-synchronizing

views

chad:

lastRecerved Message:
lastSentMessage:
parenl:

processors
timeOfLastEvent:
timeOfNeztEvent:
log:

logReceipt:
logSend:to:
logTime:

mode

mode:
View

instance creation

logging access

Ist
new
new:

1sLogging
logStream:
teXFormat:
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Entities subclass:

Models

Models is the root class for ¢ DEVS model. [Note that "Model’ is already u class
in the library.]
Class variables:

None.
Instance variables:
processor < Processors> —The processor associated with
this model instance.
inport < Collection> —The input port designations.
outport < Collection> ~The oulputl port designalions.
pirmap < Pizmap> —A pizmap that represents the

current slate.

In addilion, sigma is the time left in the current phase.
Each subclass should initialize the input and output port designations for each
instance. This class requires protocols for “initialize’ and 'restart’. The distinc-

tion s:
initialize  Initialize those components of the instance that are

fized at creation, normally the input and output
port names and perhaps defoults for graphical com-
ponents. Note: a method “nitP ~is’is required for
mnitializing port names.

restart Initialize those components of the instance that
define the stale of the model at the start of a
simulation.
name
parent
processor
inport
outport
pixmap
accessing inpott
outport
processor
processot:
DEVS restart
displaying state
80




initialize-release extent:

inttialize
. initPorts

port creation ,

printing printOn:
printString

private baseVisualComponent
inport:
outport:

private-accessing name:
parent
parent.

. . teXName
private-logging 1sLogging
views view
instance creation new
logging access 1sLogging

logStream:
teXFormat:
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Models subclass:

CoupledModels

A coupled model 1s an absiract class that embodies hierarchical model compasi-
tion (see Zeigler pp. 59ff).

Instance variables:

children < Collection> —the list of component models
receivers < Collection> —associtales an mput port of my
model with my children who are
connected Lo it. This i1s man-
tained by my subclasses.
influencees < Collection> —conneclions belween compo-
nent output ports and inpul
ports. Each component 1s a
coupling.
priorityList < OrderedCollection>—used to break ties resulting from
two children having the same
time lo next event. The first
child in this list has highest pri-
ority. The select function (p.
56) uses this list.
name
perent
processor
inport
ocutport
pizmap
receivers
influencees
priority List
accessing getChildren
getInfluencees:
getReceivers:
influencees:
priorityList.
receivers:
select:
translate
DEVS restart
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displaying state

initialize-release eztenl:
mnitiglize

. intiPorts

port creation ,

printing printOn:
printSiring

private base VisualComponent
inport:

. oulport:
private-accessing name:

parent
parent:

. teXName
private-logging 1sLogging
views view
instance creation makePair:
Jdogging access isLogging

logStream:
feXFormat:
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CoupledModels subclass:

DigraphModels

Digraph models are coupled models containing a helerogeneous mirture of chii-
dren and/or non-regular couplings between children (see Zeigler, chapter 5).

Instance variables:
composition Tree < CompositionTree> —defines the component models

influenceDigraph < DirectedGraph>  —defines which chidren influ-
ence others, 1.e. whose sulpuls
affect whose inputs.

selectFn < BlockContezt> —a block having one parame-
ter, an ordered collection from
which it answers the next 1m-
manent child to be selected. If
this variable 1s mil. then prior-
ttylList 1s used.

name

parent

processor

inport

outport

pirmap

receivers

influencees

priorityList

compositionTree

influenceDigraph

selectFn —_

accessing getChildren
getinfluencees:
getRecervers:
influencees:
priorityList:
receivers:
select:
Iranslate
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DEVS addCouple:port:connectedTo. poru
buildCompositionTree:
compositionTree
connect:1o:
getChildren
getlnfluencees:
getReceivers:
select:
selectFn:
setExtInpCoup:connect:to:
setExtOutCoup:connect:to:
setIntCoup:portName:to:portName:

specifyChildren:
translate:model:
displaying state
initialize-release extent:
mnatralize
. initPorts
port creation .
printing priniOn:
printString
private base VisualComponent
inport:
oulport:
private-accessing name:
parent
parent:
teXName
private-logging 1sLogging
views view
instance creation new:
logging access 1sLogging
logStream:
te XFormat:
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DigraphModels subciasy

DvnamicDigraphModels

A dynamic digraph model 1s o dynamic model tn which the compunent modeds
can be created and destroyed during @ simulalion run The dyndmiacs reguire
close cooperation with the coardinator attached to this tnstance which must be
an mstance of DynamacCoordinator

Note that this class Aas not been implemented

name
parent
processor
wnport
oulport
pizmap
receivers
influencees
priorityList
composilionTree
mfluence Digraph
selectFn
access-dynamic addChildModel
addChildModelwithExternalinput-
Couplings:withExternalQutput-
Couplings:withlnternalCouplhings.
accessing getChildren
getInfluencees:
getRecervers:
influencees:
priorilyLast:
recetvers:
select:
translate
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DEVS addCouple port connected l'v port
butldCompositiun Tree.
composition [ree
connect to.
getChildren
getinfluencees:
getReceivers:
select:
selectFn:
setEztInpCoup:connect.to:
setE2tOutCoup:connect:{o:
setIntCoup portName to. poriName.

specifyChuldren:
. trenslate:model:
displaying state
initialize-release extent:
intralize
. it Ports
port creation ,
printing printOn:
printSiring
private base VisualComponent
mnport:

. . outport:

private-accessing name;
parent
parent:

. teXName
private-logging 15sLogging
views view
instance creation new:
logging access isLogging

iogStream:
teX Format:
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Models subclass:

AtomicModel

An anstance of class AtomicModel represents a specific atomac model. Protocol
prowided for the object corresponds to the DEVS protocol for atomic models.

This implementation varies from Zeigler’s in that we use instance varigbles fo
hold that stale rather than a single variable s.

Instance Variables:

T < Content> —erternal input causing fhas
: event
Y < Content> —most recenlly generaled content
for cutput
sigma < Duration> —Ume remaining {in minules) (o
the nert internal cvent
phase < Symbol> —the current phase (state}
e < Duration> —elapsed time in the current
phas.
name
parent
processor
inport
outport
pixmap
X
y.
sigma
phase
e
accessing e
e:
phase
phase:
sigma
sigma:
X
X
Y
y:
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DEVS

displaying
initialize-release

macros

port creation
printing

private

private-accessing

private-logging

views

extTransFn:externallnput:
extTransition

intTransFn

intTransition

outputEh

outputFn

restart

timeAdvanceEhL

timeAdvanceFn
status

extent:

instialize
initPorts
continue
holdIn:forTime:
inject:value:
inject:value:elapsedTime:
noQutput
passivate
passivateln:
send:toPort:

printOn:

priniString

base VisualComponent
inport:

oulport:

name:

parent

parent:

teXName
logExtTransFn

logintTransition:
logOutputEh:

logTimeAdvanceEh:
view

instance creation

logging access

makePair:

new:
isLogging
logStream:
teXFormat:
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Appendix B

Application Class
Specifications

Specifications for application classes are provided in this appendix. These classes
are in the CHP Category in the 1inage st80-C1IP.

The classes in the application comy}..uent of CLIP are subclasses of DEVS classes
and are shown in boldface:
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Entities [68]
Models {80]
AtomicModel (88}
Dispatcher [103]
Equipment {108]
CuttingMachine {114]
AutomaticCutter [116]
BITECutter [120]
LaserCutter {118]
ManualCutter [122]
SpreadingMachine (130]
AutomaticSpreader [132]
Table [124]
CuttingTable [128]
SpreadingTable {126]
Planner [99]
CoupledModels {82]
DigraphModels [84]
DynamicDigraphModels [86]
Room [92]
CuttingRoom [96]
Warehouse [94]
Processors [69]
Coordinator [73]
DynamicCoordinator [75]
RootCoordinator [77]
Simulators [71]

The format corresponds to that described in Appendix A.
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DigraphModels subclass:
Room
A Room is a component of a plant.
Instance Variables:
equipment —the equipment in this room.
layout —tke layout of the room—a de-
scriplion of the room's size and
shape and the location of cach
piece of equipment in the room.
name
parent
processor
inport
outport
pizmap
Teceivers
mnfluencees
priorityList
composition Tree
influence Digraph
selectFn
accessing getChildren
getInfluencees:
getRecesvers:
influencees:
priorityList:
receivers:
select:
translate
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DEVS

displaying
initialize-release

port creation
printing

private

private-accessing

private-logging
views

addCouple:port:connectedTo:port:
busldComposition Tree:
compositionTree

connect:to:

getChaldren

getinfluencees:

getRecesvers:

select:

selectFn:
setExtInpCoup:connect:to:

set ExtQutCoup:connect:to:
setiniCoup:portName:to:poriName:
specifyChildren:

translate:model:
state

eztent:
initsalize
initPorts

printOn:

printString

base VisualComponent
inport:

outport:

name:

parent

parent:

teXName
1isLogging

view

instance creation
logging access

new:
isLogging
logStream:
teXFormat:
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Room subclass:

Warehouse

A Warehouse is that portion of a plan! that is responsible for receiving materials,
maintatning stored items, and delivering malerials (o organizations both inside
and oulside the plant.

name

parent

processor

inport

outport

pizmap

receivers

influencees

priorityList

composilionTree

influenceDigraph

selectfn

accessing getChildren
getInfluencees:
getRecetvers:
influencees:
priorityList:
recetvers:
select:
translate
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DEVS

displaying
initialize-release

port creation
printing

private

private-accessing

private-logging
views

addCouple:port:connected To:port:
buildCompositionTree:
compositionTree
connect:lo:

getChaldren

getInfluencees:
getRecetvers:

select:

selectFn:
setErtInpCoup:connect:to:
setExtOutCoup:conneci:to:

setintCoup:portName:to:portName:

specifyChildren:

translaie:model:
slate

eztent:
mnitialize
nstPorts

printOn:

priniString

base VisualComponent
inport:

oulport:

name:

parent

parent:;

teXName
1sLogging

view

instance creation
logging access

new:’

isLogging
logStream:
teXFormat:

95




Room subclass:

CuttingRoom

A CuttingRoom is a facility comprising the resources needed to cut fabric: equip-
ment, operators, and materigls. An inslance is a digraph model that comprises
a planner, a dispaicher for operaiors, a dispatcher for materials, and equipment
such as spreaders and cutlers.

The relationships between the various pieces of equipmeni must be specified ez-
plicitly. The relationships between the planner end dispaichers are defined au-
tomatically at instance cre-tion.

Instance Variables:
oscar < .nner> —A planner that oversees ezecu-

tion of a plan. The plan desig-
nates how resources are routed
to equipmet for various tasks.
The planner com-
ponent is named after Oscar
FEstes, the culting room man-
ager at Jantzen in Seneca, SC,
who helped us with this project.

breakArea < Dispatcher> —A dispatcher of the operators in
the cutting room. An operator
1s always routed to the model
for the equipment to which he
is next assigned. When an op-
erator is off-dutly, then he 1s
routed back to the dispatcher.

dropArea < Dispatcher> —A dispatcher of the materials in
the cutting room. An material
1s always routed 1o the model
for the equipment to which 1t 1s
nezt used.

equipments < Set> —The equipment available for
use in the cutting room.

Testing:
"instance creation test.."
| cuttingRoom el e2 equipment huey dewey loute operatlors malerials |
el := Equipment makePair: 'E1’,
e2 := Equipment makePair: 'E2’.
equipment := OrderedCollection with: el with: e2.
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huey := Operator new name: 'Huey'.

dewey := Operalor new name: "Dewey’.

louie := QOperator new name: 'Louie’.

operators := Set with: huey with: dewey with: louie.
matlerials ;= Set with: (Material new).

cuttingRoom := CutlingRoom makePair: 'Test CR’ containing: equipment

operalors: operalors materials: materials.

cuttingRoom

name
parent

processor

inport

outpori

pirmap

receivers
influencees
priorityList
composition Tree
influence Digraph
selectFn

oscar

breakArea
dropArea
equipments
plan

accessing

DEVS
displaying
initialize-release

port creation
printing

private

breakArea
dropArea
equipment
oscar

plan:
restait

slale
containing:operators:materials:
initPorts

printOn:

printString

base VisualComponent
nport:

outport:
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private-accessing

private-logging
views

name:
parent
parent:

teXName
1sLogging
view

instance creation
logging access

makePair:containing:operators:materials:
1sLogging
logStream.:
teXFormat:
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AtomicModel subclass:

Planner

A planner 1s 6 model that distributes a plan to other models. The plan 1s specified
before stmulation begins. A pilanner has N oulpul ports, labeled #plani, #plan2,
..., planN that can be used to connect to other models. The value of N 1s specified
on instantiation and may not be changed.

Planner
result
done
D tm——
plani
starnt
—— plan2
planN

A planner also tracks the completion of work assignments in the plan. A work
assignment arriving on the #done port 1s logged as completed as of the time
of its arrival. When all work assignments are completed, then the plan and
statistics are emilted on the #resull port.

A planner has (N+2) states, numbered 0 through (N+1). State 0 indicates that
no plan has yet been received. State I ( 1 <= [ <= N) indicates the plan 1s to
be output on port #planl. State (N+1} 15 a tracking state 1n which information
about completed tasks arriving on the #done inpul port is recorded.

The output ports are represented by an array collection so that the names can
be matched with states—the first element is #planl, the second #plan2, and so
on,
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state vartables:

sigma = mfinity -~ nothing happens until a plan arrives {on g#start;
phuse = ¢ ~ signifies that a plan has not yet arrived
plan = nil

external transidion function:
cgse inpul-port

start: store plan
hold in 1 for 0
done: record task completion
contlinue
else
error

internal transition function:

case phase
I: 2
2 3
N: #tracking

oulput function:

if { phase  #tracking )
send plan {o port #plan(phase)

~~~~~~~~~~~~~~~~~~~~ Instance variables:

plan < Plan> —the plan to be dispersed

n <Integer> ~—the number of aulput ports, c1-
cluding #result

resulls < Stalistics> —the statistics associated with
the plan

port <Symbol> —the name of the port {o which
the plan should be sent, nil if
none.
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Testing:
Planner makePair: 'Test Planner’ oulportCount. 3

“The following 15 a stand-alone test of this model (see pp. S2ff.*
“Inspect p after each of the statements below to perform the test.”

| p plan wal wa?2 wal |
p -= Planner new: 'Planner’
p outportCount: J.

plan := Plan new.

wal ;= WorkAssignment new.

wa? .= WorkAssignment new.

wad = WorkAssignment new.

plan add: wal; add: wa?2; add: wa3.
p plan: plan.

p restart. self halt.

p intTransition.

p oulputEh.
p intTransition.

“(#plani, plan)"
“state: (sigma = 0, phase = 2, plan = plan

r = (#start, plan), y = (#planl, planj"

p outputEh. “(#plan?, plan)"
p intTransition.
p outputEh. "(#plan3. plan)"

p intTransition.

p inject: #done value:
p inject: #done value:
p wnject: #done value:

wal elapsedTime: 1.
wa? elapsedTime: 2.
wad elapsedTime. 3.

name
parent
processor
inport
oulport
pizmap

T

y

sigma
phase

e

plan

n

results
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accessing outportNumber:
plan
plan:

statistics
DEVS extTransFn:externallnput:

intTransFn
outputfn
restart
displaying slatus
initialize-release initPorts
outportCount:
macros conlinue
koldIn:forTime:
inject:value:
injecl:value-elapsed Time:
noQuipul
passivate
passivaleln:
send:toPort:

port creation )
printing printOn:
printString
private base VisualComponent
inpori:
. . outport:
private-accessing name:
parent
parent.

. . teXName
private-logging logEztTransFn

logintTransition:
logOutput Eh:

logTimeAdvanceEh:
views view

instance creation makePair:outportCount:
logging access isLogging

logStream:

teXFormat:
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AtomicModel subclass:

Dispatcher

A Dispatcher is a model component that manages a pool of resources, dispalching
a resource to another model in accordance with some plan. A dispalcher has 2
input ports, #plan and #in, and N oulpul ports: #outl, #out2, ..., FoullN.
Port #plan 1s an input port on which a plan is to be received thal drives the
routing of resources to and from lhe dispalcher. Resources arrive on port #in
and are dispaiched to other models an an #Foul* pori.

Dispatcher
plani
plan
——
plan2
planN

Fach output port is assumed to de routed to one model. The association between
model and oulput port is stored in a dictionary (mappingDictionary} and 1s
established at instance creaiic: using the models provided. For ezample, if the
models are (ml m2), then an ussociation belween Foull and ml! and between
#out? and m2 is made. When . resource arrives on #in, and the plan reflects
that the resource should be rouied next to mi, then the resource is output on
#oull based on the dictionary association of ml and #outl. Care must be
laken lo preserve correcl routing in the model—that is, that connections are
correct.

Every resource must be able to answer the message 'whereNert: aPlan’ with the
nezt work assignment the resource is called for. An answer of nil designates that
the resource has no more uses witkin the plan. In determining the nexrt model,
a resource may safely assume that first work assignment for il in the plan is the
nezt to be performed. ’

Instance variables:




plan

mappingDictionary

resources

readyResources

doneReseurces

< Plan> —The plan against which re-
sources are dispalched,
< Dictionary> —A dictionary whose keys are

workstations and whose values
are oulput port names. This
ts used to route resources o
a workslation as given in the
plan.

< Set> —A set of the resources that have
not yet been dispatched, either
because they have no work des-
tgnated to be done or because
they are not available at the
current time.

< RoutingTable> —The resources that are ready
for dispatching, keyed by the
model that s the destination.

< ResourceCollection> Resources not needed any fur-
ther in the plan
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Testing:
“The following is a stand-alone test of this model (see pp. 82ff)."
“Inspect dispaicher after each of the statements below to perform the test."

| models resources plan wal wa2 wa8 o1 02 03 el e2 dispatcher |

ol := Operator new name: 'ol’; yourself.
02 := Operator new name: '02’°; yourself.
03 := Operator new name: '03’; yourself.

el := Equipmeni new name: ’el’; yourself.
e2 := Fquipmenl new name: ’e2’; yourself.

plan := Plan new.

plan startTime: (SimulationTime date: (Date today) time: (Time now)}.

wal := WorkAssignment workstation: (Workstation al: el) operators: {Set
with: ol) task: nil.

waf := WorkAssignment workstation: (Workstation al: e2) operators: (Set
with: 02} task: nil.

wa8 := WorkAssignment workstation: {Workslation at: el) operators: (Set
with: 03) task: nil.

plan add: wal; add: wa2; add: wa3.

models := OrderedCollection with: el with: e2.

resources := OrderedCollection with: ol with: o2 with: 03.

dispaicher := Dispaicher makePair: ’'Big D’ forModels: models forRe-
sources: resources.

dispaicher initialize.
dispaicher inject: Fplan value: plan elapsedTime: 0.
dispaicher intTransition.
dispaicher outputEh.
dispatcher intTransition.
dispatcher outputEh.
dispatcher

dispatcher inject: #in value: plan elapsedTime: 0.
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name

parent

processor

inport

outport

pizmap

z

y

sigma

phase

e

plan

mappingDictionary

resources

readyResources

doneResources

clock

accessing doneResources
outportNumber:
portFor:
readyResources
resources

DEVS extTransFn:externallnput.
intTransFn
oulputFn
restart

displaying status

initialize-release forModels:forResources:
initPorts

macros continue
holdIn:forTime:
inject:value:
inject:value:elapsed Time:
noQutput
passivale
passivateln:

. send:toPort:
operating checkResources
) wakeup

port creation ,

printing priniOn:

private base VisualComponent

inport:
oulport:
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private-accessing

private-logging

views

name:
parent
parent:

teXName
logEztTransFn

logintTransition:
logOutputEh:

logTimeAdvanceEh:
view

instance creation

logging access

forModels:forResources:
makePair:forModels:forResources:

isLogging
logStream:
teXFormat:
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AtomicModel subclass:

Equipment

Equipment is any piece of machinery.

Equipment

done
plan o

product
optrin

optrOut
matiin

matiOut

Equipment has behavior such that if it has @ work assignment in the plan that
is still "o do", and sufficient resources and operators are available lo perform
the work assignment, and the worksiation for the assignmant is available, then
work on the task is begun. Upon completion of a work assignment, stalistics
are emilled on the #done porl, the product is emitted on the Fproduct port, the
operator(s) who performed the task are emitted on the FopirOut port, and the
collection of materials (what’s left of them) is emitted on the #matlOut port.

Every piece of equipment comprises a set of workstations. For this class, only
one workstation can be active at a time. (See subclasses for equipment that can
support multiple active workstations.)

Each piece of equipment has a wait area al which idle operators and materials
wail for the start of a task specified in a work assignment. The wait area is
represented by instance variables "wailingOperators’ and 'waitingMaterials’.

When a resource arrives al equipment, it ts put in the wail area and then a
check is made to see if a work assignment can be started based on the presence
of all required resources in the wait area and the availability of the workstation
specified. The current implementation insists that work assignments be started
in their order in the plan. When a work assignment is started, eligible operatfors
not selected for the task are emitted on the FoptrOut port. [A work assignment
may specify a task to be performed by any one of a set of operators.]

Equipment has the following phases and transitions:

#passive =>
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Hworking =>

#done => [emal statistics]
#product => [emil product |
#optrOul => [emit busyOperators |
#matlOul => [emit busyMaterials |
(back to #passive or Fworking)

Instance Viartables:
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location
name
number
status

manufacturer
serialNumber

(Simulation-related entities:)
clock
plan

toDo

startClock

current WorkAssignment
busy Workstations

busyOperators
busyMatertals
waitingOperalors
waitingMaterials
product

statistics

110

—the location of the equipment
on the shop floor.

—the descriptive name for this
equipment.

—the identification number as-
signed o this equipment.

—an indication of whether the
equipment is operable or avail-
able for work or not.

—the equipment manufacturer.

—the serial number for this piece
of equipment.

—the (global) simulation time

—the current plan under simu-
lation (a shallow copy of the
original)

—the portion of the plan for this
piece of equipment that is not
yet started.

—the value of clock when work on
the current task started.

—the current work assignment

—the workstations currently ac-
tive for this piece of equip-
meni. This is a sorted col-
lection, ordered by increncing
time to nert work assignmecal
completion. An instance will
have at most one dbusy worksta-
tion, but subclasses might have
more.

—a collection of operators busy at
this equipment.

—a collection of materials in use
at this equipment.

—a collection of operators wait-
ing for workstation availabality.

—a collection of materials wait-
ing for worksiation availabilily.

—the product of the most recently
completed task.

—statistics for the most recently
completed work assignment




The methods in category DEVS defaull to model a piece of equipment that takes 5
minutes to do any task. The product is a siring of the form 'Product <time>’,
where <time> designates the simulation time al which the product was com-
pleted.
Testing:

| plan wal wa2 wa3 ol 02 03 equipment |

ol := Operator new name: 'ol’; yourself.

02 := Qperator new name: '02’; yourself.
03 := Operator new name: ’03’; yourself.

equipment := Equipment new neme: ’E’; yourself.

plan := Plan new.
plan startTime: (SimulationTime date: (Date loday) time: (Time now)).
wal := WorkAssignment workstation: (Worksiation at: equipment) oper-

ators: (Set with: ol) task: nil.

wa? := WorkAssignment workstation: (Workstation al: equipment) oper-
ators: {Set with: 02) task: nil.

wad := WorkAssignment workstation: (Workstation at: equipment) oper-
ators: (Set with: 03) task: nil.

plan add: wal; add: wa2; add: wad.

equtpment restart.

equipment inject: #plan value: plan elapsedTime: 0.
equipment inject: #Fopirln value: ol elapsedTime: 0.
equipment intTransition.
equipment cutputEh.
equipment intTransition.
equipment oulputEh.

equipment

equipment inject: #in value: plan elapsedTime: 0.
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name

parent

processor

inport

outport

pizmap

z

y

sigma

phase

e

location

description

number

status

manufacturer

serialNumber

clock

plan

startClock

toDo

current Work Assignment

busy Workstations

waitingOperators

waitingMaterials

product

statistics

accessing busy Workstations
description
description:
location
manufacturer
moveTo:
number
serialNumber
waitingMaterials
waitingOperators

DEVS extTransFn:externallnput:
mtTransfn
oulputFn
restart

displaying status

initialize-release initPorts
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macros

port creation
printing
private

private-accessing

private-logging

views

continue
holdIn forTime:
mject:vnlue:

mjecl:valueelapsedTime:

noQutput
passivate
passivaleln:
send:toPort:

praniOn:
check

plan:
start:on:by:using:
name:

parent

parent:

teXName
logEztTransFn

logInt Transition:
logOutput Eh:

logTimeAdvanceEh:
vtew

instance creation

logging access

makePair:

_ new;
isLogging

logStream:
teXFormat:
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Equipment subclass:

CuttingMachine

A CuttingMachine 1s o machine used to cut fabric.

Instance Variables:
fabrics

maznimumCuttingDepth

Class Variables:

—tie fabrics that can be vut by
this machine.
—the marimum cutling depth

name
parent

processor

inport

outport

pirmap

z

y

sigma

phase

e

location

description

number

slatus

manufacturer
serialNumber

clock

plan

stariClock

toDo

current WorkAssignment
busy Workstations
waitingOperalors
waitingMalerials
product

stalistics

fabrics
maximumCuttingDepth
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accessing

DEVS

displaying
initialize-release
macros

port creation
printing
private

private-accessing

private-logging

views

fabrics
fabrics:
maximumCuttingDepth
maximumCuttingDepth:

ezxtTransFn externalinput:

ntTransFn
oulputfn

restart
status

tnitPorts

continue

holdIn:forTime:
inject:value.
inject:value:elapsedTime:
noQuiput

passivale

passivateln:

send:loPort:

printOn:

check

plan:
startzon:by:using:
name:

parent

parent:

teXName
logExtTransFn

logInt Transition:
logOQutput Eh:

logTimeAdvanceEh:
view

instance creation

logging access

make Pair:
new:

1sLogging
logStream.
te X Formal:
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CuttingMachine subclass:

AutomaticCutter

An AutomaticCutler 1s a culler whose blade is under computer conirol.

name
parent

processor

inport

oulport

pizmap

z

y

sigma

phase

e

location

description

number

status

manufacturer
serialNumber

clock

plan

startClock

toDo

current WorkAssignment
busy Workstations
waitingOperators
watlingMaterials
product

statlastics

Jabrics

mazimum CutlingDepth

accessing fabrics
fabrics:
mazimumCuttingDepth
mazimumCuttingDepth:
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DEVS

displaying
initialize-release
macros

port creation
printing
private

private-accessing

private-logging

views

extTransFn:externallnput:
intTransFn
oulputFn

restart
status

init Ports

conlinue

holdIn:forTime:
injeci:value:

inject:value elapsedTime:
noQulput

passivate

passivate/n:

send:toPort:

priniQOn:

check

plan:
start:on:byrusing:
name:

parent

parent:

teXName
logEztTransFn

logintTransition:
logQutpul Eh:
logTimeAdvanceEh:

view

instance creation

logging access

makePair:

new;
isLogging
logStream:
teXFormat:
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AutomaticCutter subclass:

LaserCutter

A LaserCuiter is a culter in which a laser beam is used to cut fabric.

name
parent

processor

mport

outport

pizmap

T

y4

sigma

phase

e

location

description

number

status

manufacturer
serialNumber

clock

plan

startClock

toDo

current WorkAssignment
busy Workstations
wattingQOperators
waitingMalerials
product

statistics

fabrics

mazimum CuttingDepth

accessing fabrics
fabrics:
mazimumCuttingDepth
mazimumCutlingDepth:
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DEVS

displaying
initialize-release
macros

port creation
printing
private

private-accessing

private-logging

views

extTransFn:ezxiernallnput:

intTransFn
outputFn

restart
stalus

natPorts
conlinue
holdIn:forTime:
inject:value:

inject:value:elapsed Time:

noQulput
passtvate
passivateln:
send:toPort:

printOn:

check

plan:
start:on:by:using:
name:

parent

parent:

teXName
logEziTransFn

logint Transition:
logQutputEh:
logTimeAdvanceEh:
view

instance creation

logging access

makePair:

. new:
1sLogging
logStream:
teXFormat:
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AutomaticCutter subclass:

BITECutter

A BITECutter is an automatic cutler that has a cutting blade mounted on a
mechanism that allows the blade to be moved to any point in an X-Y coordinate
system. The blade is controlled by digital data that represenis a marker. The
length of a spread to be cul may be longer than the table for the cuiter.

name
parent

processor

inport

oulport

pizmap

z

¥

sigma

phase

e

location

description

number

status

manufacturer
serialNumber

clock

plan

startClock

toDo

current WorkAssignment
busy Workstations
wattingOperators
waitingMaterials
product

statistics

fabrics

mazimum CuttingDepth
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accessing

DEVS

displaying
initialize-release
macros

port creation
printing
private

private-accessing

private-logging

views

fabrics

fabrics:
mazimumCutltingDepth
mazimumCultingDepth:

extTransFn:ezternallnput;

mtTransFn
oulputFn

restart
status

nitPorts

continue

holdIn:forTime:
inject:value:
inject:valuezelapsed Time:
noQOulpul

passivale

passivateln:

send:toPort:

priniOn:

check

plan:
start:on:by:using:
name:

parent

parent:

teXName
logEztTransFn

logIntTransition:
logOutput ER:

logTimeAdvanceEh:
view

instance creation

logging access

makePair:
new:

1sLogging
logStream:
teXFormat:
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CuttingMachine subclass:

ManualCutter

A ManualCutter is a cutier whose path is controlled completely by an operator.

name
parent

processor

inport

outport

pirmap

z

¥

sigma

phase

e

location

description

number

status

manufacturer
seria{Number

clock

plan

startClock

toDo

current WorkAssignment
busyWorkstations
waitingOperators
wattingMaterials
product

statistics

fabrics

mazimum CuttingDepth

accessing fabrics
fabrics:
mazimumCutlingDepth
mazimum CuttingDepth:

122




DEVS

displaying
initialize-release
macros

port creation
printing
private

private-accessing

private-logging

views

extTransFn:externalinput:
intTransFn
oulpulFn

restart
status

wnitPorts

continue

holdIn:forTime:
inject.value:
inject:value:elapsed Time:
noQuiput

passtvate

passivateln:

send:toPorl:

printOn:

check

plan:
start:on:by:using:
name:

parent

parent:

teXName
logEztTransFn

logIntTransition:
logOutputEh:
logTimeAdvanceEh:

view

instance creation

makePair:
new:

logging access isLogging
logStream:
teXFormat:
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Equipment subclass:

Table

A Table is a raised, flat, rectanguiar surface.

Instance Variables:
height

length
width

Class Variables:

—the height of this fable.
—1the length of this tabie.
—the wrdth of this table.

location
description
number
status
manufaclurer
sertalNumber
clock

plan
startClock
toDo

current WorkAssignment

busy Workstations
waitingOperators
watingMaterials

product

stalistics

height

length

width

accessing

DEVS

initialize-release
printing

height
length
width

ezt TransFn:externallnput:
intTransFn
outputFn

restart
tnitPorts

printOn:
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private

views

check

plan:
start:on:by:using:
view

instance creation

height:width:height:
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Table subclass:

SpreadingTablc

A SpreadingTable is a table on which fabric is spread, either manually or by
using an eutomalic spreader.

Instance Variables:
Class Variables:

location

description

number

stalus

manufacturer

serig!Number

clock

plan

startClock

toDo

current WorkAssignment

busyWorksiations

wattingOperators

wailingMaterials

product

statistics

height

length

width

accessing height
length
width

DEVS extTransFn:ezternallnput:
intTransFn
outputFn

e e 1s restart

initialize-release it Ports

printing printOn:

private check
plan:

i start:on:by:using:

views view
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instance creation

height:width:height:
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Table subclass:

CuttingTable

A CuattingTable 15 u table on which fabric 1s cut, esther manually or autenati-
cally.

Instance Variables:
cutlers ~the collectivn of cutters that

can be used gt thes tubie

Class Vuariables:

location
descriplion
number

status
manufacturer
serialNumber
clock

plan

startClock

toDo

current WorkAssignment
busyWorkstalions
waitingQperalors
waiingMaterials
product

statistics

height

length

widlh

cutters

accessing height
length

width
DEVS eztTransFn:erternalinput:

mmtTransFn
oufputFn

e restart
initialize-release initPorts

printing printOn.

128




private check
plan:
start:on by using:

TBS cutters

. cutters:
views view
instance creation height:undth height:
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Equipment subclass:

SpreadingMachine

A spreading machine is a piece of equipment used for spreading. The model kas
two

Instance Variables:
mountedRolls —a dictionary of the mounted

rolls. The key 1s some desig-
nation of a mount.

weightLimils —the marimum weight that a roll
mount can suppori, 1n pounds.
sizeLimils —the mazimum rofl diameter

that a roll mount can hold.

The last two altributes are ignored in this implementation.
Class Variables:

location
descriplion

number

status

manufacturer
serialNumber

clock

plan

startClock

toDo

current WorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product

stalistics

mountSymbols
mountedRolls

weight Limits

sizeLimits

spreadRates

retnrnRate
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accessing

DEVS

initialization-release
initialize-release
operating

printing
private

views

mount3ymbols
returnRate
returnRate:

spreadRates:
ezt TransFn:externalinput:

it TransFn
oulputFn

restart L
mitialize:weight Limits:sizeLimits:spreadRates:

initPorts
clearOut
mount:
mount:on:
remove:
removeRoll:
respondTo:

spreadRateFor:
printOn:

check

plan:
start:on:by:using:
view

mmstance creation

new:
new:spread Rates:
new:welghtLimits:sizeLimits:spreadRates:
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SpreadingMachine subclass:

AutomaticSpreader

An AustomaticSpreader is a machine that can be atiached to a spreading table
and used to spread fabric. Fabric (in rolls or other form) are atlached to the
spreader. The spreader then spreads the fabric in a single ply.

Instance Variables:
Class Variables:

location
description
number

status
manufacturer
serigiNumber
clock

plan

startClock

toDo
currentWorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product

statistics
mouniSymbols
mountedRolls
weightLimits
sizeLimits

spread Rates
returnRate

accessing mountSymbols
refurnRale
relurnRate:
spreadRates:

DEVS extTransFn:externalinput:

intTransFn
oulputFn

. . restart
initialization-release
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initialize-release initPorts

operating clearOul
mount:
mount:on:
remove:
removeRoll:
respondTo:
spreadRateFor:

printing priniOn:

private check
plan:

. start:on:by:using:
views view

instance creation new:
new:spreadRates:
new:wetght Limils:sizeLimats:spread Rates:
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Appendix C

Test Class Specifications

The classes whose specifications appear in this appendix are used for testing.
They correspond to the generator, transducer, and simple processor models
described by Zeigler. Not only are these classes useful for testing, they are also
useful as a model for writing application classes.

The classes in the testing component of CZIP are subclasses of DEVS classes
and are shown in boldface:

Entities [68]
Models [80]

AtomicModel [88]
GeneratorModels {135]
SimpleProcessorModel [139]
TransducerModels [137]

CoupledModels [82]
DigraphModels [84]

Processors [69]

Coordinator [73]

RootCoordinator [77]

Simulators (71}

The format corresponds to that described in Appendix A.

The end of this appendix provides text that can be used to run a simulation
{see Section 3.5).
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AtomicModel subclass:

GeneratorModels

This class implements the model described by Zeigler in section 5.1.1.

Instance variables:

nextJobNumber —
interarrivalTime —

name

parent

processor

mport

outport

pizmap

z

y

sigma

phase

e

nextJobNumber

igterarrivalTime

accessing interarrival Time
interarrivalTime:

DEVS extTransFn:ezternallnput:
intTransFn
oulputFn
restart

displaying status

initialize-release init Ports

macros continue
holdIn:for Time:

inject:value:
inject:value:elapsed Time:
noQutput

passivate

passivateln:

send:toPort:
port creation

printing printOn:
printString
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private

private-accessing

private-logging

views

base VisualComponent
inport:

oulport:
nextJobName
nextJobNumber

nextJobNumber:
logExtTransFn

logintTransilion:
logOQutputEh:

logTimeAdvanceEh:
view

instance creation

logging access

makePair:interarrival Time:
new:

~ new:interarrivalTime:
isLoggqing

logStream:

teXFormal:
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AtomicModel subclass:

TransducerModels

This class implements the models described by Zeigler in section 3.1.2.

Instance variables:

observationInterval —
arrivedList -
solvedList —
clock < Duration> —Total time elapsid in the run
totaiTa —
name
parent
processor
inport
outport
pizmap
z
¥
sigma
phase
e
observationlnterval
arrivedList
solvedList
clock
totalTa
accessing arrivedList
arrivedList:
clock
clock:
observationInterval:
solvedList
solvedList.:
totalTa
totalTa:
DEVS extTransFn:externalinput.
intTransFn
oulputFn
restart
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displaying
initialize-release
macros

port creation
printing

private

private-accessing

private-logging

views

status

wnitPorts

continue

koldIn:forTime:
inject:value:
inject:value:elapsed Time:
noQutput

passivale

passivateln:

send:toPort:

printOn:

printString

base VisualComponent
mport:

outport:

name:

parent

parent:

teXName
logEzt TransFn

logIntTransition:
logQutput Eh:
logTimeAdvanceEh:

view

instance creation

logging access

makePair:observationlnterval:
new:;

~ new:observationlnterval:
isLogging

logSiream:

teXFormat:
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AtomicModel subclass:

SimpleProcessorModel

This class implements the model described by Zeigler in section §.2.

Instance variables:
jobID —
processingTime —

Testing:
This te.. is taken from Zeigler, p. 82ff. Stale is listed as: (sigma phase job-1d
processing-time)

| p !
p := SimpleProcessorModel makePair: P’ processingTime: 5 minutes.
p restart.

"a" p z: (Conlent port: (p , #in) value: #zl).

“hn p e: 0 minutes.

e p extTransition. "State: (5 #busy #z1 5)"

v p oulputEh.

"eh p intTransition. “State: (INF #passive #zl1 5)"
.

np p inject: (p, #in) value: - zl elapsedTime: 0 minutes.

"y p inject: (p, #in) value: #z2 elapsedTime: 3 minules.

" p outputEh.

e p intTransition. "State: (INF #passive #zl 5)"

name

parent

processor

inport

outport

pizmap

T

¥

sigma

phase

e

jobID

processingTime
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accessing

DEVS

displaying
initialize-release
Imacros

port creation
printing

private

private-accessing

private-logging

views

jobID

joblD:

processing Time
processing Time:
extTransFn:ezternallnput.
wntTransfn

culputFn

restart
status

initPorts

continue

holdIn:forTime:
inject:value:

injecl:value elapsed Time:
noQutput

passtvate

passivateln:

send:toPort:

printOn:

printString

base VisualComponent
inport:

oulpori:

rame:

parent

parent:

teXName
logEztTransFn

logIntTransition:
logOutputEh:
logTimeAdvanceEh:

view

instance creation

logging access

makePair:processingTime:
new:
new:processing Time:

isLogging
logSiream:
teXFormat:
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This is the text of file “simple test.”

{\tt "}simple test{\tt "}
| genr transd p ef efp rl

{\tt "}Processors teXFormat: true.{\tt "}
Processors logStream: ’simp.log’ asFilename writeStream.
{\tt "}Processors logStream: nil.{\tt "} {\tt “}Close the log stream--later'!{\tt "}

genr := GeneratorModels makePair: ’GENR’ interarrivalTime: 10 minutes.
transd := TransducerModels makePair: ’'TRANSD’ observationlnterval: 100 minutes.
p := SimpleProcessorModel makePair: ’'P’ processingTime: 5 minutes.

ef := (DigraphModels makePair: 'EF’).

ef

inport: #(in);

outport: #(result out);

specifyChildren: ((OrderedCollection new) add: genr; add: transd; yourself);
{\tt "}External input coupling..{\tt “}

addCouple: ef port: #in connectedTo: transd port: #solved;
{\tt "}External output coupling..{\tt "}

addCouple: genr port: #out connectedTo: ef port: #out;
addCouple: transd port: #out connectedTo: ef port: #result;
{\tt "}Internal coupling..{\tt "}

addCouple: genr port: #out connectedTo: transd port: #ariv;
addCouple: transd port: #out connectedTo: genr port: #stop.

efp := (DigraphModels makePair: ’EF-P’).

r
r

efp

inport: #();
outport: #(out);
specifyChildren: ({OrderedCollection new) add: p; add: ef; yourself);
priorityList: ( (OrderedCollection new)
addFirst: p;
addLast: ef; yourself );
{\tt "}External input coupling..{\tt "}
{\tt "}External output coupling..{\tt "}
addCouple: ef port: ¥#result connectedTo: efp port: #out;
{\tt "}Internal coupling..{\tt "}
addCouple: p port: #out comnectedTo: ef port: #in;
addCouple: ef port: #out connectedTo: p port: #in.

;= (RootCoordinator new: ’RC’).
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startTime: {SimulationTime date: (Date today) time: (Time fromSeconds: T},

timelimit: r startTime + 110 minutes,
linkToParent: (efp processor).
SimulationRunView tryOn: 1.
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